1
|
Shanbhag S, Sanz-Esporrin J, Kampleitner C, Lie SA, Gruber R, Mustafa K, Sanz M. Peri-implant bone regeneration in pigs. Int J Implant Dent 2024; 10:55. [PMID: 39546101 PMCID: PMC11568104 DOI: 10.1186/s40729-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
PURPOSE To review the current literature to answer the focused question: in the experimental pig model (population), which types of peri-implant bone defects (exposure) have been used evaluate different modes of therapy and what is their capacity for spontaneous healing and regeneration (outcome)? METHODS Following PRISMA guidelines, electronic databases were searched for studies reporting peri-implant bone defects in the maxillae or mandibles of pigs. Those studies which reported a control group of untreated defects with assessment of spontaneous regeneration [new bone area (BA)] and/or re-osseointegration [new bone-to-implant contact (BIC)] via quantitative radiography or histomorphometry were included in a random effects meta-analysis for the outcomes BA and BIC. RESULTS Overall, 21 studies, mostly performed in the mandibles of minipigs, were included. Most studies reported 'acute' intrabony (circumferential and/or dehiscence; n = 12) or supra-alveolar defects (horizontal; n = 4). Five studies attempted to induce 'chronic' peri-implantitis lesions using ligatures with conflicting results. Meta-analyses revealed pooled estimates (with 95% confidence intervals) of 48.07% BIC (30.14-66%) and 64.31% BA (42.71-85.91%) in intrabony defects, and 52.09% BIC (41.83-62.35%) and 28.62% BA (12.97-44.28%) in supra-alveolar defects. Heterogeneity in the meta-analysis was high (I2 > 90%). CONCLUSION Current evidence for peri-implant bone regeneration in pigs is mainly based on acute intrabony defects, which demonstrate a high capacity for spontaneous regeneration and re-osseointegration. The evidence for chronic peri-implantitis is limited and does not clearly indicate a spontaneous progression of the disease in this animal model.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway.
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway.
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Javier Sanz-Esporrin
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, Division of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Stein-Atle Lie
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Reinhard Gruber
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Kamal Mustafa
- Center for Translational Oral Research (TOR), Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Mariano Sanz
- Department of Periodontology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Camacho-Alonso F, Águila OGD, Ferrer-Díaz P, Peñarrocha-Oltra D, Guerrero-Sánchez Y, Bernabeu-Mira JC. Cyanoacrylate versus Collagen Membrane as a Sealing for Alveolar Ridge Preservation: A Randomized Clinical Trial. J Funct Biomater 2024; 15:279. [PMID: 39452578 PMCID: PMC11508997 DOI: 10.3390/jfb15100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/28/2024] [Accepted: 09/18/2024] [Indexed: 10/26/2024] Open
Abstract
This study involved a randomized clinical trial that included 140 patients. Alveolar ridge preservation was performed with xenografts. Sealing in the control group consisted of a collagen membrane versus cyanoacrylate in the test group. The dental implants were placed immediately after extraction. The variables were evaluated at 3, 12, and 18 months of follow-up. Pearson's chi-squared test was used for qualitative variables and the Student t-test for related samples was used for quantitative variables. The change in buccolingual alveolar bone width was significantly greater in the CMX group than in the CX group after three months (p < 0.005). However, significance was not reached at the other follow-up timepoints (p > 0.005). CAL showed significantly greater values in the CMX group than in the CX group (p < 0.005), and MBL proved greater in the CMX group than in the CX group, with p < 0.001. Five membrane exposures were recorded in the CMX group. Cyanoacrylate as a sealing method for alveolar ridge preservation seems to afford better clinical and radiological results than collagen membrane.
Collapse
Affiliation(s)
| | | | - Paula Ferrer-Díaz
- Private Oral Surgery and Medical Practice, 30100 Murcia, Spain; (O.G.-D.Á.); (P.F.-D.)
| | - David Peñarrocha-Oltra
- Oral Surgery Unit, Department of Stomatology, University of Valencia, 46010 Valencia, Spain; (D.P.-O.); (J.C.B.-M.)
| | | | - Juan Carlos Bernabeu-Mira
- Oral Surgery Unit, Department of Stomatology, University of Valencia, 46010 Valencia, Spain; (D.P.-O.); (J.C.B.-M.)
| |
Collapse
|
3
|
Thieu MKL, Stoetzel S, Rahmati M, El Khassawna T, Verket A, Sanz-Esporrin J, Sanz M, Ellingsen JE, Haugen HJ. Immunohistochemical comparison of lateral bone augmentation using a synthetic TiO 2 block or a xenogeneic graft in chronic alveolar defects. Clin Implant Dent Relat Res 2023; 25:57-67. [PMID: 36222116 PMCID: PMC10092822 DOI: 10.1111/cid.13143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/28/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To evaluate osteogenic markers and alveolar ridge profile changes in guided bone regeneration (GBR) of chronic noncontained bone defects using a nonresorbable TiO2 block. MATERIALS AND METHODS Three buccal bone defects were created in each hemimandible of eight beagle dogs and allowed to heal for 8 weeks before GBR. Treatment was assigned by block randomization: TiO2 block: TiO2 -scaffold and a collagen membrane, DBBM particulates: Deproteinized bovine bone mineral (DBBM) and a collagen membrane, Empty control: Only collagen membrane. Bone regeneration was assessed on two different healing timepoints: early (4 weeks) and late healing (12 weeks) using several immunohistochemistry markers including alpha-smooth muscle actin (α-SMA), osteopontin, osteocalcin, tartrate-resistant acid phosphatase, and collagen type I. Histomorphometry was performed on Movat Pentachrome-stained and Von Kossa/Van Gieson-stained sections. Stereolithographic (STL) models were used to compare alveolar profile changes. RESULTS The percentage of α-SMA and osteopontin increased in TiO2 group after 12 weeks of healing at the bone-scaffold interface, while collagen type I increased in the empty control group. In the defect area, α-SMA decreased in the empty control group, while collagen type I increased in the DBBM group. All groups maintained alveolar profile from 4 to 12 weeks, but TiO2 group demonstrated the widest soft tissue contour profile. CONCLUSIONS The present findings suggested contact osteogenesis when GBR is performed with a TiO2 block or DBBM particulates. The increase in osteopontin indicated a potential for bone formation beyond 12 weeks. The alveolar profile data indicated a sustained lateral increase in lateral bone augmentation using a TiO2 block and a collagen membrane, as compared with DBBM and a collagen membrane or a collagen membrane alone.
Collapse
Affiliation(s)
- Minh Khai Le Thieu
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sabine Stoetzel
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Maryam Rahmati
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Thaqif El Khassawna
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Anders Verket
- Department of Experimental Trauma Surgery, Faculty of Medicine, Justus-Liebig University Giessen, Giessen, Germany
| | | | - Mariano Sanz
- Periodontology, University Complutense of Madrid, Madrid, Spain
| | - Jan Eirik Ellingsen
- Department of Prosthetics and Oral Function, University of Oslo, Oslo, Norway
| | - Håvard Jostein Haugen
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Le Thieu MK, Homayouni A, Hæren LR, Tiainen H, Verket A, Ellingsen JE, Rønold HJ, Wohlfahrt JC, Cantalapiedra AG, Muñoz FMG, Mendaña MP, Lyngstadaas SP, Haugen HJ. Impact of simultaneous placement of implant and block bone graft substitute: an in vivo peri-implant defect model. Biomater Res 2021; 25:43. [PMID: 34823602 PMCID: PMC8620131 DOI: 10.1186/s40824-021-00245-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/15/2021] [Indexed: 12/31/2022] Open
Abstract
Background Insufficient bone volume around an implant is a common obstacle when dental implant treatment is considered. Limited vertical or horizontal bone dimensions may lead to exposed implant threads following placement or a gap between the bone and implant. This is often addressed by bone augmentation procedures prior to or at the time of implant placement. This study evaluated bone healing when a synthetic TiO2 block scaffold was placed in circumferential peri-implant defects with buccal fenestrations. Methods The mandibular premolars were extracted and the alveolar bone left to heal for 4 weeks prior to implant placement in six minipigs. Two cylindrical defects were created in each hemi-mandible and were subsequent to implant placement allocated to treatment with either TiO2 scaffold or sham in a split mouth design. After 12 weeks of healing time, the samples were harvested. Microcomputed tomography (MicroCT) was used to investigate defect fill and integrity of the block scaffold. Distances from implant to bone in vertical and horizontal directions, percentage of bone to implant contact and defect fill were analysed by histology. Results MicroCT analysis demonstrated no differences between the groups for defect fill. Three of twelve scaffolds were partly fractured. At the buccal sites, histomorphometric analysis demonstrated higher bone fraction, higher percentage bone to implant contact and shorter distance from implant top to bone 0.5 mm lateral to implant surface in sham group as compared to the TiO2 group. Conclusions This study demonstrated less bone formation with the use of TiO2 scaffold block in combination with implant placement in cylindrical defects with buccal bone fenestrations, as compared to sham sites.
Collapse
Affiliation(s)
- Minh Khai Le Thieu
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317, Oslo, Norway
| | - Amin Homayouni
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317, Oslo, Norway
| | - Lena Ringsby Hæren
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317, Oslo, Norway
| | - Hanna Tiainen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317, Oslo, Norway
| | - Anders Verket
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Jan Eirik Ellingsen
- Department of Prosthetic Dentistry and Oral Function, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Hans Jacob Rønold
- Department of Prosthetic Dentistry and Oral Function, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Johan Caspar Wohlfahrt
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Antonio Gonzalez Cantalapiedra
- Universidade de Santiago de Compostela, Facultad de Veterinaria, Campus Universitario, s/n, 27002, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Avda. da Coruña, 500 (CEI-NODUS), 27003, Lugo, Spain
| | - Fernando Maria Guzon Muñoz
- Universidade de Santiago de Compostela, Facultad de Veterinaria, Campus Universitario, s/n, 27002, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Avda. da Coruña, 500 (CEI-NODUS), 27003, Lugo, Spain
| | - Maria Permuy Mendaña
- Universidade de Santiago de Compostela, Facultad de Veterinaria, Campus Universitario, s/n, 27002, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Avda. da Coruña, 500 (CEI-NODUS), 27003, Lugo, Spain
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317, Oslo, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317, Oslo, Norway.
| |
Collapse
|
5
|
Blanc-Sylvestre N, Bouchard P, Chaussain C, Bardet C. Pre-Clinical Models in Implant Dentistry: Past, Present, Future. Biomedicines 2021; 9:1538. [PMID: 34829765 PMCID: PMC8615291 DOI: 10.3390/biomedicines9111538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/23/2022] Open
Abstract
Biomedical research seeks to generate experimental results for translation to clinical settings. In order to improve the transition from bench to bedside, researchers must draw justifiable conclusions based on data from an appropriate model. Animal testing, as a prerequisite to human clinical exposure, is performed in a range of species, from laboratory mice to larger animals (such as dogs or non-human primates). Minipigs appear to be the animal of choice for studying bone surgery around intraoral dental implants. Dog models, well-known in the field of dental implant research, tend now to be used for studies conducted under compromised oral conditions (biofilm). Regarding small animal models, research studies mostly use rodents, with interest in rabbit models declining. Mouse models remain a reference for genetic studies. On the other hand, over the last decade, scientific advances and government guidelines have led to the replacement, reduction, and refinement of the use of all animal models in dental implant research. In new development strategies, some in vivo experiments are being progressively replaced by in vitro or biomaterial approaches. In this review, we summarize the key information on the animal models currently available for dental implant research and highlight (i) the pros and cons of each type, (ii) new levels of decisional procedures regarding study objectives, and (iii) the outlook for animal research, discussing possible non-animal options.
Collapse
Affiliation(s)
- Nicolas Blanc-Sylvestre
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Philippe Bouchard
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Department of Periodontology, Rothschild Hospital, European Postgraduate in Periodontology and Implantology, Université de Paris, 75012 Paris, France
| | - Catherine Chaussain
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
- AP-HP, Reference Center for Rare Disorders of the Calcium and Phosphate Metabolism, Dental Medicine Department, Bretonneau Hospital, GHN-Université de Paris, 75018 Paris, France
| | - Claire Bardet
- Université de Paris, Institut des Maladies Musculo-Squelettiques, Orofacial Pathologies, Imaging and Biotherapies Laboratory URP2496 and FHU-DDS-Net, Dental School, and Plateforme d’Imagerie du Vivant (PIV), 92120 Montrouge, France; (N.B.-S.); (P.B.); (C.C.)
| |
Collapse
|
6
|
Thieu MKL, Haugen HJ, Sanz-Esporrin J, Sanz M, Lyngstadaas SP, Verket A. Guided bone regeneration of chronic non-contained bone defects using a volume stable porous block TiO2 scaffold: An experimental in vivo study. Clin Oral Implants Res 2021; 32:369-381. [PMID: 33420723 DOI: 10.1111/clr.13708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/09/2020] [Accepted: 01/01/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To evaluate new lateral bone formation and lateral volume augmentation by guided bone regeneration (GBR) in chronic non-contained bone defects with the use of a non-resorbable TiO2 -block. MATERIALS AND METHODS Three buccal bone defects were created in each hemimandible of eight beagle dogs and allowed to heal for 8 weeks before treatment by GBR. Each hemimandible was randomly allocated to 4- or 12-week healing time after GBR, and three intervention groups were assigned by block randomization: TiO2 block: TiO2 -scaffold and a collagen membrane, DBBM particles: Deproteinized bovine bone mineral (DBBM) and a collagen membrane, Empty control: Collagen membrane only. Microcomputed tomography (microCT) was used to measure the lateral bone formation and width augmentation. Histological outcomes included descriptive analysis and histomorphometric measurements. RESULTS MicroCT analysis demonstrated increasing new bone formation from 4 to 12 weeks of healing. The greatest width of mineralized bone was seen in the empty controls, and the largest lateral volume augmentation was observed in the TiO2 block sites. The DBBM particles demonstrated more mineralized bone in the grafted area than the TiO2 blocks, but small amounts and less than the empty control sites. CONCLUSION The TiO2 blocks rendered the largest lateral volume augmentation but also less new bone formation compared with the DBBM particles. The most new lateral bone formation outward from the bone defect margins was observed in the empty controls, indicating that the presence of either graft material leads to slow appositional bone growth.
Collapse
Affiliation(s)
- Minh Khai Le Thieu
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway.,Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Javier Sanz-Esporrin
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Mariano Sanz
- ETEP Research Group, Faculty of Odontology, University Complutense of Madrid, Madrid, Spain
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Anders Verket
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|
7
|
Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20174221. [PMID: 31466409 PMCID: PMC6747264 DOI: 10.3390/ijms20174221] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review is aimed at evaluating the effectiveness of synthetic block materials for bone augmentation in preclinical in vivo studies. An electronic search was performed on Pubmed, Scopus, EMBASE. Articles selected underwent risk-of-bias assessment. The outcomes were: new bone formation and residual graft with histomorphometry, radiographic bone density, soft tissue parameters, complications. Meta-analysis was performed to compare new bone formation in test (synthetic blocks) vs. control group (autogenous blocks or spontaneous healing). The search yielded 214 articles. After screening, 39 studies were included, all performed on animal models: rabbits (n = 18 studies), dogs (n = 4), rats (n = 7), minipigs (n = 4), goats (n = 4), and sheep (n = 2). The meta-analysis on rabbit studies showed significantly higher new bone formation for synthetic blocks with respect to autogenous blocks both at four-week (mean difference (MD): 5.91%, 95% confidence intervals (CI): 1.04, 10.79%, p = 0.02) and at eight-week healing (MD: 4.44%, 95% CI: 0.71, 8.17%, p = 0.02). Other animal models evidenced a trend for better outcomes with synthetic blocks, though only based on qualitative analysis. Synthetic blocks may represent a viable resource in bone regenerative surgery for achieving new bone formation. Differences in the animal models, the design of included studies, and the bone defects treated should be considered when generalizing the results. Clinical studies are needed to confirm the effectiveness of synthetic blocks in bone augmentation procedures.
Collapse
|
8
|
Zhang X, Tiainen H, Haugen HJ. Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion. Med Biol Eng Comput 2018; 57:311-324. [DOI: 10.1007/s11517-018-1884-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/05/2018] [Indexed: 01/21/2023]
|