1
|
Choi H, Sohn DS. Retrospective Study of Maxillary Sinus Augmentation Using Demineralized Tooth Block Bone for Dental Implant. Bioengineering (Basel) 2024; 11:633. [PMID: 38927869 PMCID: PMC11201244 DOI: 10.3390/bioengineering11060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
(1) Background: When placing implants in the maxillary posterior region with insufficient alveolar bone, a maxillary sinus elevation is necessary. Autogenous bone, though biologically ideal, poses risks and discomfort due to donor site harvesting. Block-type autogenous tooth bone graft material, made from the patient's own extracted tooth, offers similar biological stability without these drawbacks. (2) Methods: This study observed the progress of 19 implant patients who were treated with maxillary sinus elevation procedures using block-type autogenous tooth bone graft material at the Daegu Catholic University Medical Center. Extracted teeth were processed into demineralized tooth block bone. After elevating the sinus membrane, implants and the tooth bone graft material were placed in the space, and the bony window was repositioned. Postoperative evaluations through clinical observation and radiographic imaging assessed sinus membrane elevation, alveolar bone height increase, and implant osseointegration. (3) Results: Results showed proportional increases in alveolar bone height to the graft material size, with long-term stability. No postoperative complications occurred, even with sinus membrane perforation, and implants remained stable. (4) Conclusions: The study concludes that maxillary sinus lifts using block-type autogenous tooth bone graft material provide excellent bone induction and biocompatibility, making this a highly beneficial method for both dentists and patients.
Collapse
Affiliation(s)
- Hyunsuk Choi
- Department of Dentistry and Prosthodontics, Daegu Catholic University School of Medicine, Daegu 42472, Republic of Korea;
| | - Dong-Seok Sohn
- Department of Dentistry and Oral and Maxillofacial Surgery, Daegu Catholic University Medical Center, Daegu 42472, Republic of Korea
| |
Collapse
|
2
|
Khurshid Z, Adanir N, Ratnayake J, Dias G, Cooper PR. Demineralized dentin matrix for bone regeneration in dentistry: A critical update. Saudi Dent J 2024; 36:443-450. [PMID: 38525180 PMCID: PMC10960104 DOI: 10.1016/j.sdentj.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 03/26/2024] Open
Abstract
Over the last few decades, several new materials and techniques have been developed for bone regeneration. Scaffolds based on demineralized dentin matrix (DDM) present an attractive option due to their availability and several animal and human studies have been conducted to ascertain their utility in regenerative dentistry. The aim of this review was to summarize the recent studies conducted on DDM and used for bone grafts. PubMed, Web of Science, and Scopus were used to search for studies published within the last 10 years. The keywords and terms used were: "demineralized dentine matrix", "bone grafting", "bone augmentation" and "guided tissue regeneration" in various combinations. Original studies (in vitro, animal and human) and systematic reviews were included in the literature search. The literature search initially identified 23 studies (16 animal studies and 7 clinical reports. Most studies included in this review indicate that DDM has demonstrated promising results in a variety of dental and regenerative medicine applications. Further studies are required to completely comprehend its characteristics and prospective applications. Future studies should also focus on optimizing the processing protocols for the production of DDM-based scaffolds.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Jithendra Ratnayake
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - George Dias
- Department of Anatomy, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| | - Paul R. Cooper
- Department of Oral Science, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin 9016, New Zealand
| |
Collapse
|
3
|
Pimentel I, Henriques B, Silva F, Carvalho O, Teughels W, Özcan M, Souza JCM. Morphological aspects and distribution of granules composed of deproteinized bovine bone or human dentin into a putty mixture: an in vitro study. Head Face Med 2023; 19:55. [PMID: 38110992 PMCID: PMC10726580 DOI: 10.1186/s13005-023-00398-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/02/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE The main aim of this study was to evaluate the morphological aspects and distribution of granules composed of deproteinized bovine bone mineral (DBBM) and human dentin-derived bone graft (HDBG) into a putty consistency mixture. MATERIALS AND METHODS DBBM or HDBG were mixed with an alginate-based hydrogel at two different granule/hydrogel ratio (1:1 and 1:3) and divided into four test groups while two control groups were composed of DBBM or HDBG free of hydrogel. Groups of specimens were cross-sectioned for morphological evaluation by scanning electron microscopy (SEM) at backscattered electrons mode. Details on the dimensions and pores' size of DBBM and HDBG were evaluated after mixing different amounts of particles and alginate-based hydrogels. RESULTS Microscopic analyses revealed a size of DBBM granules ranging from 750 up to 1600 μm while HDBG particles showed particle size ranging from 375 up to 1500 μm. No statistical differences were identified regarding the size of granules (p > 0.5). The mean values of pores' size of DBBM particles were noticed at around 400 μm while HDBG particles revealed micro-scale pores of around 1-3 μm promoted by the dentin tubules (p < 0.05). The lowest distance between particles was at 125 μm for HDBG and 250 μm for DBBM when the particle content was increased. On decreasing the particles' content, the distance between particles was larger for DBBM (~ 1000 μm) and HDBG (~ 1100 μm). In fact, statistically significant differences were found when the content of granules increased (p < 0.05). CONCLUSIONS The increased content of bioactive ceramic granules in a putty consistency mixture with hydrogel decreased the space among granules that can promote a high ceramic density and stimulate the bone growth over the healing process. Macro-scale pores on bovine bone mineral granules stimulate the formation of blood vessels and cell migration while the micro-scale pores of dentin-derived granules are proper for the adsorption of proteins and growth of osteogenic cells on the bone healing process. CLINICAL SIGNIFICANCE A high amount of bioactive ceramic granules should be considered when mixing with hydrogels as a putty material since that result in small spaces among granules maintaining the bone volume over the bone healing process. Deproteinized bovine bone mineral granules have macro-scale pores providing an enhanced angiogenesis while dentin-derived granules possess only micro-scale pores for the adsorption of proteins and proliferation of osteogenic cells on the bone healing process. Further studies should evaluate the combination of different bioactive ceramic materials for enhanced bone healing.
Collapse
Affiliation(s)
- Inês Pimentel
- University Institute of Health Sciences (IUCS), CESPU, Gandra PRD, 4585-116, Portugal
| | - Bruno Henriques
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Guimarães, 4800-058, Portugal
- Associate laboratory (LABBELS), University of Minho, Guimarães, Braga, 4710-057, Portugal
- Ceramic and Composite Materials Research Group (CERMAT), Dept. of Mechanical Engineering (EMC), Federal University of Santa Catarina (UFSC), Florianópolis, SC, 88040-900, Brazil
| | - Filipe Silva
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Guimarães, 4800-058, Portugal
- Associate laboratory (LABBELS), University of Minho, Guimarães, Braga, 4710-057, Portugal
| | - Oscar Carvalho
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Guimarães, 4800-058, Portugal
- Associate laboratory (LABBELS), University of Minho, Guimarães, Braga, 4710-057, Portugal
| | - Wim Teughels
- Department of Oral Health Sciences, Periodontology, Dentistry, University Hospitals Leuven, Katholieke Universiteit Leuven, Leuven, 3000, Belgium
| | - Mutlu Özcan
- Clinic for Masticatory Disorders and Dental Biomaterials, Center of Dental Medicine, University of Zurich, Zurich, 8032, Switzerland.
| | - Júlio C M Souza
- Center for Microelectromechanical Systems (CMEMS), University of Minho, Guimarães, 4800-058, Portugal.
- Associate laboratory (LABBELS), University of Minho, Guimarães, Braga, 4710-057, Portugal.
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa (UCP), Viseu, 3504-505, Portugal.
| |
Collapse
|
4
|
Calvo-Guirado JL, Cabo-Pastor MB, Martínez-Martínez F, Garcés-Villalá MÁ, de Carlos-Villafranca F, García-Carrillo N, Fernández-Domínguez M. The Use of Human Sterilized Crushed Tooth Particles Compared with BTCP Biomaterial and Empty Defects in Bone Formation inside Critical Rabbit Calvaria Sites. Bioengineering (Basel) 2023; 10:638. [PMID: 37370569 DOI: 10.3390/bioengineering10060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to assess the bone regeneration of critical-size defects in rabbit calvaria filled with freshly crushed extracted teeth, comparing them with BTCP biomaterial and empty sites. Materials and methods: Twenty-one female New Zealand rabbits were used in this study. Two critical-size defects 6 mm in size were created in the skull bone, each with a 3 mm separation between them. Three experimental groups were evaluated: Group A (human sterilized crushed teeth granules alone), Group B (Bioner Bone, Bioner Sitemas Implantológicos), and Group C (unfilled defects). The animals were sacrificed at 4 and 8 weeks. Evaluation of the samples involved histological and histomorphometric analyses with radiographic evaluation. The histological evaluation showed a higher volume reduction in Group A compared with Group B (p < 0.05) and Control. Group A showed the highest values for cortical closure and bone formation around the particles, followed by Group B and Group C (p < 0.05). Within the limitations of this animal study, we can conclude that the use of human tooth particles leads to increased bone formation and reduced connective tissue in critical-size defects in rabbit calvaria when compared to BTCP biomaterial. The calvarial model is a robust base for the evaluation of different biomaterials.
Collapse
Affiliation(s)
| | | | - Francisco Martínez-Martínez
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| | | | | | | | | |
Collapse
|
5
|
Human dentin materials for minimally invasive bone regeneration: Animal studies and clinical cases. J Oral Biosci 2023; 65:13-18. [PMID: 36336319 DOI: 10.1016/j.job.2022.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Bone, platelet concentrate, and tooth-derived dentin/cementum have been used as autologous materials in regenerative medicine Dentin materials were first recycled in 2002 for bone regeneration in humans, although bone autografts were noted in the 19th century, and auto-platelet concentrates were developed in 1998. Dentin/cementum-based material therapy has been applied as an innovative technique for minimally invasive bone surgery, while bone autografts are associated with donor site morbidity. METHODS In October 2021, PubMed, Google Scholar, Scopus, and the Cochrane Library databases from 1980 to 2020 were screened. RESULTS The demineralized dentin/cementum matrix (DDM) had better performance in bone induction and bone regeneration than mineralized dentin. CONCLUSIONS Unlike cell culture therapy, DDM is a matrix-based therapy that includes growth factors. A matrix-based system is a realistic and acceptable treatment, even in developing countries. The aim of this review was to summarize the evidence related to both animal studies and human clinical cases using human dentin materials with a patch of cementum, especially DDM.
Collapse
|
6
|
Holiel AA, Mustafa HM, Sedek EM. Biodegradation of an injectable treated dentin matrix hydrogel as a novel pulp capping agent for dentin regeneration. BMC Oral Health 2023; 23:126. [PMID: 36841767 PMCID: PMC9960635 DOI: 10.1186/s12903-023-02831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND A novel injectable mixture termed treated dentin matrix hydrogel (TDMH) has been introduced for restoring dentin defect in DPC. However, no study evaluated its physiological biodegradation. Therefore, the present study aimed to assess scaffold homogeneity, mechanical properties and biodegradability in vitro and in vivo and the regenerated dentin induced by TDMH as a novel pulp capping agent in human permanent teeth. METHODS Three TDMH discs were weighted, and dry/wet ratios were calculated in four slices from each disc to evaluate homogeneity. Hydrogel discs were also analyzed in triplicate to measure the compressive strength using a universal testing machine. The in vitro degradation behavior of hydrogel in PBS at 37 °C for 2 months was also investigated by monitoring the percent weight change. Moreover, 20 intact fully erupted premolars were included for assessment of TDMH in vivo biodegradation when used as a novel injectable pulp capping agent. The capped teeth were divided into four equal groups according to extraction interval after 2-, 8-, 12- and 16-weeks, stained with hematoxylin-eosin for histological and histomorphometric evaluation. Statistical analysis was performed using F test (ANOVA) and post hoc test (p = 0.05). RESULTS No statistical differences among hydrogel slices were detected with (p = 0.192) according to homogeneity. TDMH compression modulus was (30.45 ± 1.11 kPa). Hydrogel retained its shape well up to 4 weeks and after 8 weeks completely degraded. Histological analysis after 16 weeks showed a significant reduction in TDMH area and a simultaneous significant increase in the new dentin area. The mean values of TDMH were 58.8% ± 5.9 and 9.8% ± 3.3 at 2 and 16 weeks, while the new dentin occupied 9.5% ± 2.8 at 2 weeks and 82.9% ± 3.8 at 16 weeks. CONCLUSIONS TDMH was homogenous and exhibited significant stability and almost completely recovered after excessive compression. TDMH generally maintained their bulk geometry throughout 7 weeks. The in vivo response to TDMH was characterized by extensive degradation of the hydrogel and dentin matrix particles and abundant formation of new dentin. The degradation rate of TDMH matched the rate of new dentin formation. TRIAL REGISTRATION PACTR201901866476410: 30/1/2019.
Collapse
Affiliation(s)
- Ahmed A Holiel
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
| | - Hossam M Mustafa
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Eman M Sedek
- Dental Biomaterials Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Sánchez-Labrador L, Bazal-Bonelli S, Pérez-González F, Sáez-Alcaide LM, Cortés-Bretón Brinkmann J, Martínez-González JM. Autogenous particulated dentin for alveolar ridge preservation. A systematic review. Ann Anat 2023; 246:152024. [PMID: 36396018 DOI: 10.1016/j.aanat.2022.152024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE This review aimed to investigate the clinical outcomes of autogenous particulated dentin (APD) used for alveolar ridge preservation (ARP), evaluating volume gain, histologic/histomorphometric data, and associated complications. MATERIAL AND METHODS The review followed PRISMA guidelines and was registered in the International Prospective Register of Systematic Reviews (PROSPERO). An automated search was made in four databases (Medline/Pubmed, Scopus, Web of Science, and Cochrane Library) supplemented by a manual search for relevant clinical articles published before March 10th, 2022. The review included human studies of at least four patients in which extraction and subsequent ARP were performed in a single surgery. Both comparative studies and studies that assessed ARP with APD exclusively were admitted. The quality of evidence was assessed with the Cochrane bias assessment tool, the Newcastle-Ottawa Quality Assessment Scale, and the Joanna Briggs Institute Critical Appraisal tool. RESULTS Eleven studies fulfilled the inclusion criteria and were included for descriptive analysis, with a total of 215 patients, and 337 alveoli preserved by APD, spontaneous healing (blood clot), or other bone substitutes, obtaining comparatively less vertical and horizontal resorption when APD was used. CONCLUSIONS After dental extraction, autogenous dentin was effective in terms of volume maintenance, showing promising results in histologic/histomorphometric analysis, and a low complication rate. Nevertheless, few comparative studies with comparable parameters have been published and so more research providing long-term data is needed to confirm these findings.
Collapse
Affiliation(s)
- Luis Sánchez-Labrador
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain.
| | - Santiago Bazal-Bonelli
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Fabian Pérez-González
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Luis Miguel Sáez-Alcaide
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain
| | - Jorge Cortés-Bretón Brinkmann
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain; Surgical and Implant Therapies in the Oral Cavity Research Group; University Complutense, Madrid, Spain
| | - José María Martínez-González
- Department of Dental Clinical Specialties, Faculty of Dentistry, Complutense University of Madrid, Spain; Surgical and Implant Therapies in the Oral Cavity Research Group; University Complutense, Madrid, Spain
| |
Collapse
|
8
|
Wu X, Peng W, Liu G, Wang S, Duan B, Yu J, Yang H, Huang C. Extrafibrillarly Demineralized Dentin Matrix for Bone Regeneration. Adv Healthc Mater 2023; 12:e2202611. [PMID: 36640447 DOI: 10.1002/adhm.202202611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Dentin is a natural extracellular matrix, but its availability in bone grafting and tissue engineering applications is underestimated due to a lack of proper treatment. In this study, the concept of extrafibrillar demineralization is introduced into the construction of dentin-derived biomaterials for bone regeneration for the first time. Calcium chelating agents with large molecular weights are used to selectively remove the extrafibrillar apatite minerals without disturbing the intrafibrillar minerals within dentin collagen, resulting in the formation of an extrafibrillarly demineralized dentin matrix (EDM). EDM with distinctive nanotopography and bone-like mechanical properties is found to significantly promote cell adhesion, migration, and osteogenic differentiation in vitro while enhancing in vivo bone healing of rat calvarial defects. The outstanding osteogenic performance of EDM is further confirmed to be related to the activation of the focal adhesion-cytoskeleton-nucleus mechanotransduction axis. Overall, this study shows that extrafibrillar demineralization of dentin has great potential to produce hierarchical collagen-based scaffolds for bone regeneration, and this facile top-down fabrication method brings about new ideas for the biomedical application of naturally derived bioactive materials.
Collapse
Affiliation(s)
- Xiaoyi Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Wenan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Gufeng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Shilei Wang
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Bo Duan
- College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan, 430072, China
| | - Jian Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Hongye Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedical Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
9
|
Minetti E, Gianfreda F, Palermo A, Bollero P. Autogenous Dentin Particulate Graft for Alveolar Ridge Augmentation with and without Use of Collagen Membrane: Preliminary Histological Analysis on Humans. MATERIALS 2022; 15:ma15124319. [PMID: 35744378 PMCID: PMC9230765 DOI: 10.3390/ma15124319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022]
Abstract
(1) Background: The phenomenon of ankylosis of the dental elements has led clinicians to think that properly treated dentin and cement may be a potential graft for alveolar ridge augmentation. Currently, there are no studies in the literature able to histomorphometrically compare the healing patterns of an autogenous dentin particulate graft with the association, or not, of resorbable membranes. The aim of this pilot study is to histologically compare bone after an alveolar ridge augmentation using an autogenous dentin particulate graft with and without a resorbable collagen membrane. (2) Methods: this clinical trial enrolled six patients with defects requiring bone augmentation. Two procedures were performed in all six adult human patients in order to perform a study–control study: in Group 1, a ridge augmentation procedure with an autogenous dentin particulate graft and a resorbable collagen membrane was performed, and, in Group 2, an alveolar ridge preservation without a membrane was performed at the same time (T0). At 4 months, a biopsy of the bone tissues was performed using a 4 mm trephine bur in order to perform a histomorphometric analysis. (3) Results: The histomorphometric analysis demonstrated that Group 1 presented 45% of bone volume, 38% of vital bone, and 7% of residual graft. On the contrary, membrane-free regenerative procedures demonstrated 37% of bone volume, 9% of vital bone, and 27% of non-resorbed graft. In all cases, the regenerated bone allowed the insertion of implants with a standard platform, and no early failures were recorded. (4) Conclusions: Autogenous dentin particulate grafts seem to work best when paired with a membrane.
Collapse
Affiliation(s)
- Elio Minetti
- Department of Biomedical, Surgical, and Dental Science, University of Milan, 20122 Milan, Italy;
| | - Francesco Gianfreda
- Department of Industrial Engineering, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence:
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Patrizio Bollero
- Department of System Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| |
Collapse
|
10
|
Murata M, Nakanishi Y, Kusano K, Hirose Y, Tazaki J, Akazawa T, Mizoguchi I. Immediate Tooth Autotransplantation with Root Canal Filling and Partially Demineralized Dentin/Cementum Matrix into Congenital Missing Tooth Region. J Funct Biomater 2022; 13:jfb13020082. [PMID: 35735937 PMCID: PMC9225279 DOI: 10.3390/jfb13020082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/01/2023] Open
Abstract
This clinical report describes immediate tooth auto-transplantation with an autograft of partially demineralized dentin/cementum matrix (pDDM), based on an orthodontic treatment plan for a 16-year-old male patient with a congenital missing tooth (#45). First, vital teeth (#14, #24) were extracted, and root canal filling (#14) was immediately performed with the support of a fixation device. Simultaneously, the tooth (#24) was crushed in an electric mill for 1 min, and the crushed granules were partially demineralized in 2% HNO3 solution for 20 min as the graft material. Next, the donor tooth was transplanted into the created socket (#45), and stabilized using an enamel bonding agent. The wet pDDM was loaded into the location of the congenital missing tooth, and the flap was repositioned. The bonding agent for stabilization was removed at 28 days, and also small contact points between the transplanted tooth and the upper premolar (#14) were added using photopolymerizable composite resin. X-ray photos were taken sequentially, and there were no postoperative complications. The radiographic images showed that the periodontal ligament space and alveolar ridge line could be observed at 18 months. The pDDM was harmonized with the mandible, and the remodeled bone-like shadow was observed in the graft region. We concluded that immediate tooth transplantation with root canal fillings and autogenous pDDM may be a valuable alternative to dental implanting or bridge formation for patients with a congenital missing tooth, followed by orthodontic treatment.
Collapse
Affiliation(s)
- Masaru Murata
- Division of Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
- Correspondence:
| | - Yasuhiro Nakanishi
- Division of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (Y.N.); (Y.H.)
| | - Kaoru Kusano
- Department of Oral Implantology, Osaka Dental University, Osaka 573-1121, Japan;
| | - Yukito Hirose
- Division of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan; (Y.N.); (Y.H.)
| | - Junichi Tazaki
- Division of Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
| | - Toshiyuki Akazawa
- Industrial Technology and Environment Research Development, Hokkaido Research Organization, Hokkaido 060-0819, Japan;
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan;
| |
Collapse
|
11
|
Demineralized Dentin Matrix for Dental and Alveolar Bone Tissues Regeneration: An Innovative Scope Review. Tissue Eng Regen Med 2022; 19:687-701. [PMID: 35429315 PMCID: PMC9294090 DOI: 10.1007/s13770-022-00438-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/08/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Dentin is a permeable tubular composite and complex structure, and in weight, it is composed of 20% organic matrix, 10% water, and 70% hydroxyapatite crystalline matrix. Demineralization of dentin with gradient concentrations of ethylene diamine tetraacetic acid, 0.6 N hydrochloric acid, or 2% nitric acid removes a major part of the crystalline apatite and maintains a majority of collagen type I and non-collagenous proteins, which creates an osteoinductive scaffold containing numerous matrix elements and growth factors. Therefore, demineralized dentin should be considered as an excellent naturally-derived bioactive material to enhance dental and alveolar bone tissues regeneration. Method: The PubMed and Midline databases were searched in October 2021 for the relevant articles on treated dentin matrix (TDM)/demineralized dentin matrix (DDM) and their potential roles in tissue regeneration. Results: Several studies with different study designs evaluating the effect of TDM/DDM on dental and bone tissues regeneration were found. TDM/DDM was obtained from human or animal sources and processed in different forms (particles, liquid extract, hydrogel, and paste) and different shapes (sheets, slices, disc-shaped, root-shaped, and barrier membranes), with variable sizes measured in micrometers or millimeters, demineralized with different protocols regarding the concentration of demineralizing agents and exposure time, and then sterilized and preserved with different techniques. In the act of biomimetic acellular material, TDM/DDM was used for the regeneration of the dentin-pulp complex through direct pulp capping technique, and it was found to possess the ability to activate the odontogenic differentiation of stem cells resident in the pulp tissues and induce reparative dentin formation. TDM/DDM was also considered for alveolar ridge and maxillary sinus floor augmentations, socket preservation, furcation perforation repair, guided bone, and bioroot regenerations as well as bone and cartilage healing. Conclusion: To our knowledge, there are no standard procedures to adopt a specific form for a specific purpose; therefore, future studies are required to come up with a well-characterized TDM/DDM for each specific application. Likely as decellularized dermal matrix and prospectively, if the TDM/DDM is supplied in proper consistency, forms, and in different sizes with good biological properties, it can be used efficiently instead of some widely-used regenerative biomaterials. Supplementary Information The online version contains supplementary material available at 10.1007/s13770-022-00438-4.
Collapse
|
12
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
13
|
Okubo N, Ishikawa M, Shakya M, Hosono H, Maehara O, Ohkawara T, Ohnishi S, Akazawa T, Murata M. Autograft of Demineralized Dentin Matrix Prepared Immediately after Extraction for Horizontal Bone Augmentation of the Anterior Atrophic Maxilla: A First Case of Non-Vital Tooth-Derived Dentin. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Naoto Okubo
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University
| | | | - Mamata Shakya
- Division of Oral Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido
| | | | - Osamu Maehara
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Tatsuya Ohkawara
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Shunsuke Ohnishi
- Laboratory of Molecular and Cellular Medicine, Faculty of Pharmaceutical Sciences, Hokkaido University
| | - Toshiyuki Akazawa
- Industrial Technology and Environment Research Development, Hokkaido Research Organization
| | - Masaru Murata
- Division of Oral Regenerative Medicine, School of Dentistry, Health Sciences University of Hokkaido
| |
Collapse
|
14
|
Zhu B, Yokozeki K, Kabir MA, Todoh M, Akazawa T, Murata M. Chemical Properties of Human Dentin Blocks and Vertical Augmentation by Ultrasonically Demineralized Dentin Matrix Blocks on Scratched Skull without Periosteum of Adult-Aged Rats. MATERIALS 2021; 15:ma15010105. [PMID: 35009252 PMCID: PMC8746034 DOI: 10.3390/ma15010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
Vertical augmentation is one of the most challenging techniques in bone engineering. Several parameters, such mechano-chemical characteristics, are important to optimize vertical bone regeneration using biomaterials. The aims of this study were to chemically characterize human dentin blocks (calcified demineralized dentin matrix: CDM, partially demineralized dentin matrix: PDDM and completely demineralized dentin matrix: CDDM) (2 × 2 × 1 mm3) chemically and evaluate the behavior of PDDM blocks on non-scratched or scratched skulls without periosteum of adult rats (10–12 months old, female) as a vertical augmentation model. The dissolved efficiency of CDM showed 32.3% after ultrasonic demineralization in 1.0 L of 2% HNO3 for 30 min. The 30 min-demineralized dentin was named PDDM. The SEM images of PDDM showed the opening of dentinal tubes, nano-microcracks and the smooth surface. In the collagenase digestion test, the weight-decreasing rates of CDM, PDDM and CDDM were 9.2%, 25.5% and 78.3% at 12 weeks, respectively. CDM inhibited the collagenase digestion, compared with PDDM and CDDM. In the PDDM onlay graft on an ultrasonically scratched skull, the bone marrow-space opening from original bone was found in the bony bridge formation between the human PDDM block and dense skull of adult senior rats at 4 and 8 weeks. On the other hand, in the cases of the marrow-space closing in both non-scratched skulls and scratched skulls, the bony bridge was not formed. The results indicated that the ultrasonic scratching into the compact parietal bone might contribute greatly to the marrow-space opening from skull and the supply of marrow cells, and then bony bridge formation could occur in the vertical augmentation model without a periosteum.
Collapse
Affiliation(s)
- Bowen Zhu
- Division of Oral Regenerative Medicine, School of Dentistry, Health Science University of Hokkaido, Kanazawa 061-0293, Japan; (B.Z.); (K.Y.); (M.A.K.)
| | - Kenji Yokozeki
- Division of Oral Regenerative Medicine, School of Dentistry, Health Science University of Hokkaido, Kanazawa 061-0293, Japan; (B.Z.); (K.Y.); (M.A.K.)
| | - Md. Arafat Kabir
- Division of Oral Regenerative Medicine, School of Dentistry, Health Science University of Hokkaido, Kanazawa 061-0293, Japan; (B.Z.); (K.Y.); (M.A.K.)
| | - Masahiro Todoh
- Biomechanical Design Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Kita-ku, Sapporo 061-0819, Japan;
| | - Toshiyuki Akazawa
- Industrial Technology and Environment Research Development, Hokkaido Research Organization, Kita 19-jo Nishi 11-chome, Kita-ku, Sapporo 060-0819, Japan;
| | - Masaru Murata
- Division of Oral Regenerative Medicine, School of Dentistry, Health Science University of Hokkaido, Kanazawa 061-0293, Japan; (B.Z.); (K.Y.); (M.A.K.)
- Correspondence: ; Tel.: +81-133-23-2921; Fax: +81-133-23-1429
| |
Collapse
|
15
|
Sohn DS, Kim JR, Kim HG, Choi HS, Moon YS. Comparison of immunohistochemical analysis on sinus augmentation using demineralized tooth graft and bovine bone. J Korean Assoc Oral Maxillofac Surg 2021; 47:269-278. [PMID: 34462384 PMCID: PMC8408643 DOI: 10.5125/jkaoms.2021.47.4.269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023] Open
Abstract
Objectives The purpose of this animal research was to compare bone regeneration in augmented rabbit maxillary sinuses treated with demineralized particulate human-tooth graft and anorganic bovine bone by immunohistochemical analysis. Materials and Methods Piezoelectric bilateral sinus augmentation was performed in eight adult rabbits. In the control group, anorganic bovine was grafted in the maxillary sinus following elevation of the sinus membrane. In the experimental group, demineralized human particulate tooth bone was grafted in the sinus. Bone regeneration in augmented sinuses was evaluated by immunohistochemical analysis using various markers of osteoprogenitor cells. Results The number of bromodeoxyuridine-labeled cells was significantly higher in the experimental group than in the control group at eight weeks. The immunoreactivity of proliferating-cell nuclear antigen was increased slightly in the experimental group relative to the control group at eight weeks. Other bone markers were expressed equally in the two groups. Conclusion In the rabbit maxillary sinus, higher osteoinduction was correlated with demineralized human particulate tooth bone grafting than with anorganic bovine grafting.
Collapse
Affiliation(s)
- Dong-Seok Sohn
- Department of Dentistry and Oral and Maxillofacial Surgery, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Ji-Rak Kim
- Department of Oral Medicine, School of Dentistry, Kyungpook National University, Daegu, Korea
| | - Hyung-Gyun Kim
- Department of Dentistry and Oral and Maxillofacial Surgery, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Hyun-Suk Choi
- Department of Dentistry and Prosthodontics, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Yong-Suk Moon
- Department of Anatomy, School of Medicine, Daegu Catholic University, Daegu, Korea
| |
Collapse
|
16
|
Allogeneic Dentin Graft: A Review on Its Osteoinductivity and Antigenicity. MATERIALS 2021; 14:ma14071713. [PMID: 33807291 PMCID: PMC8036611 DOI: 10.3390/ma14071713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/24/2023]
Abstract
Studies on allogeneic demineralized dentin matrix (Allo-DDM) implantation in the 1960s and 1970s provided the most reliable preclinical evidence of bone formation and antigenicity in an extraosseous site. Recently, applications of Allo-DDM at skeletal sites were studied, and have provided reliable evidence of bone-forming capacity and negligible antigenicity. However, the osteoinductivity and antigenicity properties of Allo-DDM in extraskeletal sites have not yet been investigated due to the lack of follow-up studies after the initial research. The clinical applications of autogenous DDM (Auto-DDM) have been standardized in some countries. Long-term clinical studies have reported the development of several shapes of Auto-DDM, such as powders, blocks, moldable forms, and composites, with recombinant human bone morphogenetic protein-2. For the development of Allo-DDM as a reliable bone graft substitute next to Auto-DDM, we reviewed preclinical studies on the bone induction capacity of allogeneic dentin at extraskeletal as well as skeletal sites. Electronic databases were screened for this review in January 2020 and searched from 1960 to 2019. This review aims to provide a foundation on the preclinical studies of Allo-DDM, which could enable future researches on its osteogenic capability and antigenicity. In conclusion, Allo-DDM showed great potential for osteoinductivity in extraskeletal sites with low antigenicity, which neither adversely affected osteogenic capability nor provoked immunologic reactions. However, the risk of viral disease transmission should be researched before the clinical application of Allo-DDM.
Collapse
|
17
|
Bio-Absorption of Human Dentin-Derived Biomaterial in Sheep Critical-Size Iliac Defects. MATERIALS 2021; 14:ma14010223. [PMID: 33466422 PMCID: PMC7796471 DOI: 10.3390/ma14010223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/24/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
The aim of this study was to evaluate the bio-absorption and bone regeneration of human tooth-derived dentin scaffold, entitled as perforated root-demineralized dentin matrix (PR-DDM), after in vivo implantation into the critical-size iliac defects. The dentin scaffolds were prepared from human vital, non-functional teeth. Thirty artificial macro-pores (Ø 1 mm) were added after removing the enamel portion. The modified teeth were supersonically demineralized in 0.34 N HNO3 for 30 min. The microstructure was observed by scanning electron microscope (SEM). The 3D micro-CT and histological analysis were carried out to evaluate the bio-absorption of PR-DDM at 2 and 4 months. A smooth dentin collagen surface with symmetrical macro-pores and tube-type dentinal tubules (Ø 1–2 µm) with micro-cracks were observed on the perforated region. A significant number of custom-made macro-pores disappeared, and the size of the macro-pores became significantly wider at 4 months compared with the 2 months (p < 0.05) evaluated by 3D micro-CT. Histological images revealed the presence of multinucleated giant cells attached to the scalloped border of the PR-DDM. The morphological changes due to bio-absorption by the cellular phagocytes were comparable to the 3D micro-CT and histological images at 2 and 4 months. Altogether, the results demonstrated that the PR-DDM block was gradually absorbed by multinucleated giant cells and regenerated bone. Human PR-DDM might serve as a unique scaffold for extraoral bone regeneration.
Collapse
|
18
|
Sánchez-Labrador L, Martín-Ares M, Ortega-Aranegui R, López-Quiles J, Martínez-González JM. Autogenous Dentin Graft in Bone Defects after Lower Third Molar Extraction: A Split-Mouth Clinical Trial. MATERIALS 2020; 13:ma13143090. [PMID: 32664303 PMCID: PMC7411779 DOI: 10.3390/ma13143090] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Various biomaterials are currently used for bone regeneration, with autogenous bone being considered the gold standard material because of its osteogenic, osteoconductive, and osteoinductive properties. In recent years, the use of autogenous dentin as a graft material has been described. This split-mouth clinical trial assesses the efficacy of autogenous dentin for the regeneration of periodontal defects caused by bone loss associated with impacted lower third molar extraction. Fifteen patients underwent bilateral extraction surgery (30 third molars) using dentin as a graft material on the test side, and leaving the control side to heal spontaneously, comparing the evolution of the defects by evaluating probing depth at three and six months post-operatively. Bone density and alveolar bone crest maintenance were also evaluated six months after surgery, and pain, inflammation, mouth opening capacity on the second and seventh days after surgery. Probing depth, radiographic bone density, and alveolar bone crest maintenance showed significant differences between the test and control sides. Autogenous dentin was found to be an effective biomaterial for bone regeneration after impacted lower third molar extraction.
Collapse
|
19
|
Ramenzoni LL, Hirsiger C, Weber FE, Attin T, Schmidlin PR. Similar inductive effects of enamel and dentin matrix derivatives on osteoblast-like cell response over SLA titanium surface. Arch Oral Biol 2019; 109:104552. [PMID: 31541843 DOI: 10.1016/j.archoralbio.2019.104552] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Accepted: 09/11/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVES The aim of this in vitro study was to investigate the behavior of osteoblasts on titanium discs under different concentrations of enamel matrix derivatives (EMD) and dentin matrix derivative (DMD). MATERIALS AND METHODS MC3T3-E1 osteoblast-like cells were cultivated on coated titanium SLA discs with EMD or DMD at 100 μg/ml, 1 mg/ml, 10 mg/ml and 30 mg/ml or left uncoated. Cell viability, proliferation, adhesion and migration were assessed respectively with MTT, BrdU, DAPI and scratch wound healing assays. Messenger ribonucleic acid of different genes related to osteoblastic differentiation was quantified by means of real-time quantitative PCR. Data were analyzed using student t-test for adhesion and migration assay and ANOVA for proliferation assay (p < 0.05). RESULTS BrdU incorporation was found in proliferative osteoblasts for both test solutions at all concentrations. Osteoblast migrated and covered approximately 70% of the wound area observed at time zero when exposed to EMD and DMD to all concentrations. The increase of gene expression was dependent on the concentration enhancement of EMD and DMD. Higher concentrations showed proliferation augmentation if compared to lower concentrations. CONCLUSIONS Roughness surface of Ti SLA can limit cell adhesion independent of the presence EMD or DMD. DMD enhances cell migration of osteoblasts on SLA titanium implants in a concentration-dependent manner.
Collapse
Affiliation(s)
- L L Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| | - C Hirsiger
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - F E Weber
- Oral Biotechnology and Bioengineering, Division of Cranio-Maxilo-Facial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - T Attin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - P R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland; Laboratory of Applied Periodontal and Peri-implantitis Sciences, Clinic of Conservative and Preventive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Nano-Structured Demineralized Human Dentin Matrix to Enhance Bone and Dental Repair and Regeneration. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9051013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Demineralized dentin matrix (DDM), derived from human teeth, is an excellent scaffold material with exciting bioactive properties to enhance bone and dental tissue engineering efficacy. In this article, first the nano-structure and bioactive components of the dentin matrix were reviewed. Then the preparation methods of DDM and the resulting properties were discussed. Next, the efficacy of DDM as a bone substitute with in vitro and in vivo properties were analyzed. In addition, the applications of DDM in tooth regeneration with promising results were described, and the drawbacks and future research needs were also discussed. With the extraction of growth factors from DDM and the nano-structural properties of DDM, previous studies also broadened the use of DDM as a bioactive carrier for growth factor delivery. In addition, due to its excellent physical and biological properties, DDM was also investigated for incorporation into other biomaterials design and fabrication, yielding great enhancements in hard tissue regeneration efficacy.
Collapse
|
21
|
Li J, Wang Z. [Effect of human tooth bone graft materials on proliferation and differentiation of mice mononuclear macrophage RAW264.7]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:1332-1339. [PMID: 30600668 PMCID: PMC8414148 DOI: 10.7507/1002-1892.201803034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/18/2018] [Indexed: 11/03/2022]
Abstract
Objective To investigate the effect of human tooth bone graft materials on the proliferation, differentiation, and morphology of macrophages, and to understand the biocompatibility and cytotoxicity of human tooth bone graft materials. Methods Fresh human teeth were collected to prepare human tooth bone graft materials, the adhesion of mouse mononuclear macrophages RAW264.7 to human bone graft materials was observed under confocal microscopy. Scanning electron microscopy was used to observe the morphology of human tooth bone graft materials, OSTEONⅡ synthetic highly resorbable bone grafting materials, and untreated tooth powder (dental particles without preparation reagents). Different components of the extract were prepared in 4 groups: group A (DMEM medium containing 10% fetal bovine serum), group B (human tooth bone graft materials), group C (OSTEONⅡ synthetic highly resorbable bone grafting materials), group D (untreated tooth powder without preparation reagents). The 4 groups of extracts were co-cultured with the cells, and the cytotoxicity was qualitatively determined by observing the cell morphological changes by inverted microscope. The cell proliferation and differentiation results and cell relative proliferation rate were determined by MTT method to quantitatively determine cytotoxicity. The cell viability was detected by trypanosoma blue staining, and tumor necrosis factor α (TNF-α ) and interleukin 6 (IL-6) expressions were detected by ELISA. Results Scanning electron microscopy showed that the surface of the human tooth bone graft material and the OSTEONⅡ synthetic highly resorbable bone grafting materials had a uniform pore structure, while the untreated tooth particle collagen fiber structure and the demineralized dentin layer collapsed without specific structure. Confocal microscopy showed that the cells grew well on human tooth bone graft materials. After co-culture with the extract, the morphology and quantity of cells in groups A, B, and C were normal, and the toxic reaction grades were all grade 0, while group D was grade 3 reaction. MTT test showed that the cytotoxicity of groups B and C was grade 0 or 1 at each time point, indicating that the materials were qualified. The cytotoxicity was grade 2 in group D at 1 day after culture, and was grade 4 at 3, 5, and 7 days. Combined with cell morphology analysis, the materials were unqualified. The trypanosoma blue staining showed that the number of cells in groups A, B, and C was significantly higher than that in group D at each time point ( P<0.05), but no significant difference was found among groups A, B, and C ( P<0.05). ELISA test showed that the levels of TNF-α and IL-6 in groups A, B, and C were significantly lower than those in group D ( P<0.05), but no significant difference was found among groups A, B, and C ( P<0.05). Conclusion The human tooth bone graft materials is co-cultured with mice mononuclear macrophages without cytotoxicity. The extract has no significant effect on cell proliferation and differentiation, does not increase the expression of inflammatory factors, has good biocompatibility, and is expected to be used for clinical bone defect repair.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Stomatology, the Second Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001, P.R.China
| | - Zhiying Wang
- Department of Stomatology, the Second Affiliated Hospital of Jinzhou Medical University, Jinzhou Liaoning, 121001,
| |
Collapse
|
22
|
Tanoue R, Ohta K, Miyazono Y, Iwanaga J, Koba A, Natori T, Iwamoto O, Nakamura KI, Kusukawa J. Three-dimensional ultrastructural analysis of the interface between an implanted demineralised dentin matrix and the surrounding newly formed bone. Sci Rep 2018; 8:2858. [PMID: 29434259 PMCID: PMC5809602 DOI: 10.1038/s41598-018-21291-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/01/2018] [Indexed: 12/15/2022] Open
Abstract
Previous investigators have reported that transplanted demineralised dentin matrix (DDM) influences bone formation in vivo. However, the specific mechanism of how dentinal tubules contribute to bone formation has not been determined with regard to DDM transplantation therapy. In this study, we ultrastructurally investigated how DDM contacted the surrounding newly formed bone using a scanning electron microscopy (SEM) three-dimensional reconstruction method that is based on focused ion beam slicing and SEM (FIB/SEM). A pulverised and processed DDM derived from human teeth was implanted into rat calvarial bone defects, and a series of X-ray computed tomographic images were obtained over 12 weeks. Implants with surrounding new bone were removed and histologically examined using FIB/SEM. After obtaining objective block-face images, the target boundary face was reconstructed three-dimensionally. The osteocytes of the new bone tissue surrounding the DDM formed a network connected by their cellular processes and formed bone tissue. It is also interesting that the cellular processes of the osteocytes extended into the dentinal tubules, and that bone tissue with canaliculi had formed and filled the DDM surface.
Collapse
Affiliation(s)
- Ryuichiro Tanoue
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan.
- Department of Dentistry and Oral Surgery, Jyosuikai Imamura Hospital, Tosu, Saga, Japan.
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yoshihiro Miyazono
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Joe Iwanaga
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Akihiro Koba
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Toru Natori
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Osamu Iwamoto
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Jingo Kusukawa
- Dental and Oral Medical Centre, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| |
Collapse
|
23
|
Um IW, Kim YK, Mitsugi M. Demineralized dentin matrix scaffolds for alveolar bone engineering. J Indian Prosthodont Soc 2017; 17:120-127. [PMID: 28584412 PMCID: PMC5450890 DOI: 10.4103/jips.jips_62_17] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/05/2017] [Indexed: 01/07/2023] Open
Abstract
From the point of view of implant dentistry, this review discusses the development and clinical use of demineralized dentin matrix (DDM) scaffolds, produced from the patient's own extracted teeth, to repair alveolar bone defects. The structure and the organic and inorganic components of DDM are presented to emphasize the similarities with autogenous bone. Studies of DDM properties, such as osteoinductive and osteoconductive functions as well as efficacy and safety, which are mandatory for its use as a bone graft substitute, are also presented. The clinical applications of powder, block, and moldable DDM are discussed, along with future developments that can support growth factor and stem cell delivery.
Collapse
Affiliation(s)
- In-Woong Um
- R & D Institute, Korea Tooth Bank, Seoul, Korea
| | - Young-Kyun Kim
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital, Seongnam.,Department of Dentistry and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Korea
| | - Masaharu Mitsugi
- Takamatsu Oral and Maxillofacial Surgery Clinic, Takamatsu, Japan
| |
Collapse
|