1
|
Du Y, Hu M, Xia Y, Jin K. Unveiling the functions of the Lim-domain binding protein MaPtaB in Metarhizium acridum. PEST MANAGEMENT SCIENCE 2024. [PMID: 39469952 DOI: 10.1002/ps.8488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND The Lim-domain binding protein PtaB, a homolog of Mfg1, governs conidiation and biofilm formation in several fungi. PtaB includes a conserved Lim-binding domain and two predicted nuclear localization sequences at its C terminus, and is co-regulated with the transcription factor Som1 downstream of the cyclic AMP-dependent protein kinase A (cAMP/PKA) pathway. However, the function of PtaB in entomopathogenic fungi remain poorly understood. RESULTS Inactivation of PtaB in Metarhizium acridum resulted in delayed conidial germination, reduced conidial yield and increased sensitivities to cell wall disruptors, ultraviolet B irradiation and heat shock. In addition, the fungal virulence was significantly decreased after deletion of MaPtaB because of impairments in appressorium formation, cuticle penetration and evasion of insect immune responses in M. acridum. The MaPtaB-deletion and MaSom1-deletion strains showed similar phenotypes supporting that MaSom1/MaPtaB complex controls M. acridum normal conidiation and pathogenic progress. Upon loss of MaPtaB or MaSom1, the fungal sporulation mode in M. acridium shifted from microcycle conidiation to normal conidiation on SYA, a microcycle conidiation medium. Transcriptional analysis showed that more differentially expression genes were identified in MaSom1 RNA sequencing, and MaSom1 and MaPtaB may regulate the expression of genes for conidiation, nutrient metabolism and the cell cycle to control conidiation pattern shift. CONCLUSION These data corroborate a complex control function for MaPtaB as an important central factor interacting with MaSom1 in the cAMP/PKA pathway, which links stress tolerance, conidiation and virulence in the entomopathogenic fungus M. acridum. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yanru Du
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Meiwen Hu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People's Republic of China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, People's Republic of China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, People's Republic of China
| |
Collapse
|
2
|
Chen Y, Gao F, Chen X, Tao S, Chen P, Lin W. The basic leucine zipper transcription factor MeaB is critical for biofilm formation, cell wall integrity, and virulence in Aspergillus fumigatus. mSphere 2024; 9:e0061923. [PMID: 38284755 PMCID: PMC10900910 DOI: 10.1128/msphere.00619-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/18/2023] [Indexed: 01/30/2024] Open
Abstract
The regulation of fungal cell wall biosynthesis is crucial for cell wall integrity maintenance and directly impacts fungal pathogen virulence. Although numerous genes are involved in fungal cell wall polysaccharide biosynthesis through multiple pathways, the underlying regulatory mechanism is still not fully understood. In this study, we identified and functionally characterized a direct downstream target of SomA, the basic-region leucine zipper transcription factor MeaB, playing a certain role in Aspergillus fumigatus cell wall integrity. Loss of meaB reduces hyphal growth, causes severe defects in galactosaminogalactan-mediated biofilm formation, and attenuates virulence in a Galleria mellonella infection model. Furthermore, the meaB null mutant strain exhibited hypersensitivity to cell wall-perturbing agents and significantly alters the cell wall structure. Transcriptional profile analysis revealed that MeaB positively regulates the expression of the galactosaminogalactan biosynthesis and β-1,3-glucanosyltransferase genes uge3, agd3, and sph3 and gel1, gel5, and gel7, respectively, as well as genes involved in amino sugar and nucleotide sugar metabolism. Further study demonstrated that MeaB could respond to cell wall stress and contribute to the proper expression of mitogen-activated protein kinase genes mpkA and mpkC in the presence of different concentrations of congo red. In conclusion, A. fumigatus MeaB plays a critical role in cell wall integrity by governing the expression of genes encoding cell wall-related proteins, thus impacting the virulence of this fungus.IMPORTANCEAspergillus fumigatus is a common opportunistic mold that causes life-threatening infections in immunosuppressed patients. The fungal cell wall is a complex and dynamic organelle essential for the development of pathogenic fungi. Genes involved in cell wall polysaccharide biosynthesis and remodeling are crucial for fungal pathogen virulence. However, the potential regulatory mechanism for cell wall integrity remains to be fully defined in A. fumigatus. In the present study, we identify basic-region leucine zipper transcription factor MeaB as an important regulator of cell wall galactosaminogalactan biosynthesis and β-1,3-glucan remodeling that consequently impacts stress response and virulence of fungal pathogens. Thus, we illuminate a mechanism of transcriptional control fungal cell wall polysaccharide biosynthesis and stress response. As these cell wall components are promising therapeutic targets for fungal infections, understanding the regulatory mechanism of such polysaccharides will provide new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuan Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Fei Gao
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Xiaojin Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Siyuan Tao
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Peiying Chen
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
| | - Wei Lin
- Nanjing University of Chinese Medicine, Nanjing Drum Tower Hospital, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
He R, Wei P, Odiba AS, Gao L, Usman S, Gong X, Wang B, Wang L, Jin C, Lu G, Fang W. Amino sugars influence Aspergillus fumigatus cell wall polysaccharide biosynthesis, and biofilm formation through interfering galactosaminogalactan deacetylation. Carbohydr Polym 2024; 324:121511. [PMID: 37985096 DOI: 10.1016/j.carbpol.2023.121511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023]
Abstract
Aspergillus fumigatus is a ubiquitous fungal pathogen responsible for a significant number of deaths annually due to invasive aspergillosis infection. While the utilization of diverse carbon sources, including amino sugars, has been explored in other fungi, its impact on A. fumigatus remains uncharted territory. In this study, we investigated A. fumigatus responses to glucose (Glc), glucosamine (GlcN) and N-acetylglucosamine (GlcNAc) as carbon sources. GlcN inhibited growth, reduced sporulation and delayed germination, while GlcNAc had no such effects. Both amino sugars induced alterations in cell wall composition, leading to a reduction in glucan and galactomannan levels while increasing chitin and mannan content, rendering A. fumigatus susceptible to cell wall stress and osmotic stress. GlcN repressed biofilm formation via downregulation of galactosaminogalactan (GAG) cluster genes, notably agd3, which encodes a GAG-specific deacetylase. Moreover, GlcN increased biofilm susceptibility to echinocandins, suggesting its potential for enhancing the effectiveness of antifungal treatments. This study sheds light on the multifaceted effects of amino sugars on A. fumigatus, encompassing growth, cell wall biosynthesis, and biofilm formation, offering promising avenues for innovative aspergillosis treatment strategies.
Collapse
Affiliation(s)
- Rui He
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Pingzhen Wei
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Arome Solomon Odiba
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linlu Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sayed Usman
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Xiufang Gong
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Wang
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Jin
- Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China; State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Guangtao Lu
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China; Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| |
Collapse
|
4
|
Liu S, Lu X, Dai M, Zhang S. Transcription factor CreA is involved in the inverse regulation of biofilm formation and asexual development through distinct pathways in Aspergillus fumigatus. Mol Microbiol 2023; 120:830-844. [PMID: 37800624 DOI: 10.1111/mmi.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
The exopolysaccharide galactosaminogalactan (GAG) contributes to biofilm formation and virulence in the pathogenic fungus Aspergillus fumigatus. Increasing evidence indicates that GAG production is inversely linked with asexual development. However, the mechanisms underlying this regulatory relationship are unclear. In this study, we found that the dysfunction of CreA, a conserved transcription factor involved in carbon catabolite repression in many fungal species, causes abnormal asexual development (conidiation) under liquid-submerged culture conditions specifically in the presence of glucose. The loss of creA decreased GAG production independent of carbon sources. Furthermore, CreA contributed to asexual development and GAG production via distinct pathways. CreA promoted A. fumigatus GAG production by positively regulating GAG biosynthetic genes (uge3 and agd3). CreA suppressed asexual development in glucose liquid-submerged culture conditions via central conidiation genes (brlA, abaA, and wetA) and their upstream activators (flbC and flbD). Restoration of brlA expression to the wild-type level by flbC or flbD deletion abolished the abnormal submerged conidiation in the creA null mutant but did not restore GAG production. The C-terminal region of CreA was crucial for the suppression of asexual development, and the repressive domain contributed to GAG production. Overall, CreA is involved in GAG production and asexual development in an inverse manner.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
5
|
Gupta L, Sen P, Bhattacharya AK, Vijayaraghavan P. Isoeugenol affects expression pattern of conidial hydrophobin gene RodA and transcriptional regulators MedA and SomA responsible for adherence and biofilm formation in Aspergillus fumigatus. Arch Microbiol 2022; 204:214. [PMID: 35314887 PMCID: PMC8938220 DOI: 10.1007/s00203-022-02817-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022]
Abstract
Aspergillus fumigatus is one of the major pathogenic fungal species, causing life-threatening infections. Due to a limited spectrum of available antifungals, exploration of new drug targets as well as potential antifungal molecules has become pertinent. Rodlet layer plays an important role in adherence of fungal conidia to hydrophobic cell surfaces in host, which also leads to A. fumigatus biofilm formation, contributing factor to fungal pathogenicity. From decades, natural sources have been known for the development of new active molecules. The present study investigates effect of isoeugenol on genes responsible for hydrophobins (RodA), adhesion as well as biofilm formation (MedA and SomA) of A. fumigatus. Minimum inhibitory concentrations (MIC and IC50) of isoeugenol against A. fumigatus were determined using broth microdilution assay. The IC50 results showed reduced hydrophobicity and biofilm formation as well as eradication after treatment with the compound and electron micrograph data corroborated these findings. The qRT-PCR showed a significant downregulation of genes RodA, MedA, SomA and pksP involved in hydrophobicity and biofilm formation. SwissADME studies potentiated drug-like propensity for isoeugenol which formed four hydrogen bonds with low binding energy (− 4.54 kcal/mol) at the catalytic site of RodA protein studied via AutoDock4. Hence, the findings conclude that isoeugenol inhibits conidial hydrophobicity and biofilm formation of A. fumigatus and further investigations are warranted in this direction.
Collapse
Affiliation(s)
- Lovely Gupta
- Antimycotic and Drug Susceptibility Laboratory, Lab 120, J3 block, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA, Uttar Pradesh, India
| | - Pooja Sen
- Antimycotic and Drug Susceptibility Laboratory, Lab 120, J3 block, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA, Uttar Pradesh, India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja Vijayaraghavan
- Antimycotic and Drug Susceptibility Laboratory, Lab 120, J3 block, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, NOIDA, Uttar Pradesh, India.
| |
Collapse
|
6
|
Spt20, a structural subunit of the SAGA complex, regulates biofilm formation, asexual development, and virulence of Aspergillus fumigatus. Appl Environ Microbiol 2021; 88:e0153521. [PMID: 34669434 DOI: 10.1128/aem.01535-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The exopolysaccharide galactosaminogalactan (GAG) plays an important role in mediating adhesion, biofilm formation, and virulence in the pathogenic fungus Aspergillus fumigatus. Previous work showed that in A. fumigatus, the Lim-domain binding protein PtaB can form a complex with the sequence-specific transcription factor SomA for regulating GAG biosynthesis, biofilm formation, and asexual development. However, transcriptional co-activators required for biofilm formation in A. fumigatus remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae transcriptional co-activator Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a regulator of biofilm formation and asexual development in A. fumigatus. The loss of spt20 caused severe defects in GAG biosynthesis, biofilm formation, conidiation, and virulence of A. fumigatus. RNA-sequence data demonstrated that Spt20 positively regulates the expression of GAG biosynthesis genes uge3 and agd3, developmental regulator medA, and genes involved in the conidiation pathway. Moreover, more than 10 subunits of the SAGA complex (known from yeast) could be immunoprecipitated with Spt20, suggesting that Spt20 acts as a structural subunit of the SAGA complex. Furthermore, distinct modules of SAGA regulate GAG biosynthesis, biofilm formation, and asexual development in A. fumigatus to varying degrees. In summary, the novel biofilm regulator Spt20 is reported, which plays a crucial role in the regulation of fungal asexual development, GAG biosynthesis, and virulence of A. fumigatus. These findings expand knowledge on the regulatory circuits of the SAGA complex relevant for biofilm formation and asexual development of A. fumigatus. IMPORTANCE Eukaryotic transcription is regulated by a large number of proteins, ranging from sequence-specific DNA binding factors to transcriptional co-activators (chromatin regulators and the general transcription machinery) and their regulators. Previous research indicated that the sequence-specific complex SomA/PtaB regulates biofilm formation and asexual development of Aspergillus fumigatus. However, transcriptional co-activators working with sequence-specific transcription factors to regulate A. fumigatus biofilm formation remain uncharacterized. In this study, Spt20, an orthologue of the subunit of Saccharomyces cerevisiae Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, was identified as a novel regulator of biofilm formation and asexual development of A. fumigatus. Loss of spt20 caused severe defects in galactosaminogalactan (GAG) production, conidiation, and virulence. Moreover, nearly all modules of the SAGA complex were required for biofilm formation and asexual development of A. fumigatus. These results establish the SAGA complex as a transcriptional co-activator required for biofilm formation and asexual development of A. fumigatus.
Collapse
|
7
|
Johns LE, Goldman GH, Ries LN, Brown NA. Nutrient sensing and acquisition in fungi: mechanisms promoting pathogenesis in plant and human hosts. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
The Transcription Factor SomA Synchronously Regulates Biofilm Formation and Cell Wall Homeostasis in Aspergillus fumigatus. mBio 2020; 11:mBio.02329-20. [PMID: 33173002 PMCID: PMC7667024 DOI: 10.1128/mbio.02329-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The cell wall is essential for fungal viability and is absent from human hosts; thus, drugs disrupting cell wall biosynthesis have gained more attention. Caspofungin is a member of a new class of clinically approved echinocandin drugs to treat invasive aspergillosis by blocking β-1,3-glucan synthase, thus damaging the fungal cell wall. Here, we demonstrate that caspofungin and other cell wall stressors can induce galactosaminogalactan (GAG)-dependent biofilm formation in the human pathogen Aspergillus fumigatus. We further identified SomA as a master transcription factor playing a dual role in both biofilm formation and cell wall homeostasis. SomA plays this dual role by direct binding to a conserved motif upstream of GAG biosynthetic genes and genes involved in cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Collectively, these findings reveal a transcriptional control pathway that integrates biofilm formation and cell wall homeostasis and suggest SomA as an attractive target for antifungal drug development. Polysaccharides are key components of both the fungal cell wall and biofilm matrix. Despite having distinct assembly and regulation pathways, matrix exopolysaccharide and cell wall polysaccharides share common substrates and intermediates in their biosynthetic pathways. It is not clear, however, if the biosynthetic pathways governing the production of these polysaccharides are cooperatively regulated. Here, we demonstrate that cell wall stress promotes production of the exopolysaccharide galactosaminogalactan (GAG)-depend biofilm formation in the major fungal pathogen of humans Aspergillus fumigatus and that the transcription factor SomA plays a crucial role in mediating this process. A core set of SomA target genes were identified by transcriptome sequencing and chromatin immunoprecipitation coupled to sequencing (ChIP-Seq). We identified a novel SomA-binding site in the promoter regions of GAG biosynthetic genes agd3 and ega3, as well as its regulators medA and stuA. Strikingly, this SomA-binding site was also found in the upstream regions of genes encoding the cell wall stress sensors, chitin synthases, and β-1,3-glucan synthase. Thus, SomA plays a direct regulation of both GAG and cell wall polysaccharide biosynthesis. Consistent with these findings, SomA is required for the maintenance of normal cell wall architecture and compositions in addition to its function in biofilm development. Moreover, SomA was found to globally regulate glucose uptake and utilization, as well as amino sugar and nucleotide sugar metabolism, which provides precursors for polysaccharide synthesis. Collectively, our work provides insight into fungal adaptive mechanisms in response to cell wall stress where biofilm formation and cell wall homeostasis were synchronously regulated.
Collapse
|
9
|
Liu L, Yu B, Sun W, Liang C, Ying H, Zhou S, Niu H, Wang Y, Liu D, Chen Y. Calcineurin signaling pathway influences Aspergillus niger biofilm formation by affecting hydrophobicity and cell wall integrity. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:54. [PMID: 32190119 PMCID: PMC7075038 DOI: 10.1186/s13068-020-01692-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/02/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND Biofilms, as a kind of fixed-cell community, can greatly improve industrial fermentation efficiency in immobilized fermentation, but the regulation process is still unclear, which restricts their application. Ca2+ was reported to be a key factor affecting biofilm formation. However, the effect of Ca2+ on biofilm structure and microbiology was yet only studied in bacteria. How Ca2+-mediated calcineurin signaling pathway (CSP) alters biofilm formation in bacteria and fungi has rarely been reported. On this basis, we investigated the regulation of CSP on the formation of biofilm in Aspergillus niger. RESULTS Deletion of the key genes MidA, CchA, CrzA or CnaA in the CSP lowered the Ca2+ concentration in the mycelium to a different extent, inhibited the formation of A. niger biofilm, reduced the hydrophobicity and adhesion of spores, destroyed the cell wall integrity of hyphae, and reduced the flocculation ability of hyphae. qRT-PCR results showed that the expression of spore hydrophobic protein RodA, galactosaminogalactan (GAG) biosynthesis genes (uge3, uge5, agd3, gtb3), and α-1,3-glucan biosynthesis genes (ags1, ags3) in the ∆MidA, ∆CchA, ∆CrzA, ∆CnaA strains were significantly down-regulated compared with those of the wild type (WT). In addition, the transcription levels of the chitin synthesis gene (chsB, chsD) and β-1,3-glucan synthesis gene (FksA) were consistent with the change in chitin and β-1,3-glucan contents in mutant strains. CONCLUSION These results indicated that CSP affected the hydrophobicity and adhesion of spores, the integrity of mycelial cell walls and flocculation by affecting Ca2+ levels in mycelium, which in turn affected biofilm formation. This work provides a possible explanation for how CSP changes the formation of A. niger biofilm, and reveals a pathway for controlling biofilm formation in industrial immobilized fermentation.
Collapse
Affiliation(s)
- Li Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Bin Yu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Hanjie Ying
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001 China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| | - Huanqing Niu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237 China
| | - Dong Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
- School of Chemical Engineering and Energy, Zhengzhou University, Zhengzhou, 450001 China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816 People’s Republic of China
| |
Collapse
|
10
|
|
11
|
Takatsuka S, Inukai T, Kawakubo S, Umeyama T, Abe M, Ueno K, Hoshino Y, Kinjo Y, Miyazaki Y, Yamagoe S. Identification of a Novel Variant Form of Aspergillus fumigatus CalC and Generation of Anti-CalC Monoclonal Antibodies. Med Mycol J 2019; 60:11-16. [PMID: 30814465 DOI: 10.3314/mmj.18-00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aspergillus fumigatus is a critical human fungal pathogen that infects the host via inhalation of airborne conidia. These conidia then germinate to form filamentous hyphae, which secrete various elements to survive in the host lung.Elements such as proteins secreted by A. fumigatus can act as virulence factors in host tissues. Among secreted proteins, we were interested in the thaumatin-like proteins of A. fumigatus. In our analysis of the function of thaumatin-like proteins, we found that, like CalA and CalB, CalC has a secreted form. Originally, CalC was predicted to be a GPI-anchored protein, as documented in the Aspergillus Genome Database. Here, we report on a novel secreted form of CalC. Furthermore, we established two novel hybridomas, C103 and C306, which recognized CalC. Monoclonal antibodies produced by these hybridomas responded to recombinant CalC produced by the mammalian cell line HEK293T and to the supernatant of cultured A. fumigatus.Taken together, our data suggest that calC can be spliced to give rise to a novel secretory form of CalC, which is present in the supernatant of cultured A. fumigatus. The hybridomas that we established will be helpful in understanding the biological role of A. fumigatus CalC.
Collapse
Affiliation(s)
- Shogo Takatsuka
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Tatsuya Inukai
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Shun Kawakubo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases.,Department of Life Science and Medical Bioscience, Waseda University
| | - Takashi Umeyama
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Masahiro Abe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Keigo Ueno
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Yasutaka Hoshino
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Yuki Kinjo
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases.,Department of Life Science and Medical Bioscience, Waseda University.,Department of Bacteriology, The Jikei University School of Medicine
| | - Yoshitsugu Miyazaki
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| | - Satoshi Yamagoe
- Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases
| |
Collapse
|
12
|
Gago S, Denning DW, Bowyer P. Pathophysiological aspects of Aspergillus colonization in disease. Med Mycol 2019; 57:S219-S227. [PMID: 30239804 DOI: 10.1093/mmy/myy076] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022] Open
Abstract
Aspergillus colonization of the lower respiratory airways is common in normal people, and of little clinical significance. However, in some patients, colonization is associated with severe disease including poorly controlled asthma, allergic bronchopulmonary aspergillosis (ABPA) with sputum plugs, worse lung function in chronic obstructive pulmonary aspergillosis (COPD), invasive aspergillosis, and active infection in patients with chronic pulmonary aspergillosis (CPA). Therefore, understanding the pathophysiological mechanisms of fungal colonization in disease is essential to develop strategies to avert or minimise disease. Aspergillus cell components promoting fungal adherence to the host surface, extracellular matrix, or basal lamina are indispensable for pathogen persistence. However, our understanding of individual differences in clearance of A. fumigatus from the lung in susceptible patients is close to zero.
Collapse
Affiliation(s)
- Sara Gago
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| | - David W Denning
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom.,National Aspergillosis Centre, University Hospital of South Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Paul Bowyer
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, CTF Building, 46 Grafton, Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
13
|
Bui TT, Harting R, Braus-Stromeyer SA, Tran VT, Leonard M, Höfer A, Abelmann A, Bakti F, Valerius O, Schlüter R, Stanley CE, Ambrósio A, Braus GH. Verticillium dahliae transcription factors Som1 and Vta3 control microsclerotia formation and sequential steps of plant root penetration and colonisation to induce disease. THE NEW PHYTOLOGIST 2019; 221:2138-2159. [PMID: 30290010 DOI: 10.1111/nph.15514] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Verticillium dahliae nuclear transcription factors Som1 and Vta3 can rescue adhesion in a FLO8-deficient Saccharomyces cerevisiae strain. Som1 and Vta3 induce the expression of the yeast FLO1 and FLO11 genes encoding adhesins. Som1 and Vta3 are sequentially required for root penetration and colonisation of the plant host by V. dahliae. The SOM1 and VTA3 genes were deleted and their functions in fungus-induced plant pathogenesis were studied using genetic, cell biology, proteomic and plant pathogenicity experiments. Som1 supports fungal adhesion and root penetration and is required earlier than Vta3 in the colonisation of plant root surfaces and tomato plant infection. Som1 controls septa positioning and the size of vacuoles, and subsequently hyphal development including aerial hyphae formation and normal hyphal branching. Som1 and Vta3 control conidiation, microsclerotia formation, and antagonise in oxidative stress responses. The molecular function of Som1 is conserved between the plant pathogen V. dahliae and the opportunistic human pathogen Aspergillus fumigatus. Som1 controls genes for initial steps of plant root penetration, adhesion, oxidative stress response and VTA3 expression to allow subsequent root colonisation. Both Som1 and Vta3 regulate developmental genetic networks required for conidiation, microsclerotia formation and pathogenicity of V. dahliae.
Collapse
Affiliation(s)
- Tri-Thuc Bui
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Rebekka Harting
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Susanna A Braus-Stromeyer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Van-Tuan Tran
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
- Department of Microbiology, Faculty of Biology, VNU University of Science, 334 Nguyen Trai, Thanh Xuan, 100000, Hanoi, Vietnam
| | - Miriam Leonard
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Annalena Höfer
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Anja Abelmann
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Fruzsina Bakti
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Rabea Schlüter
- Imaging Center of the Department of Biology, University of Greifswald, D-17489, Greifswald, Germany
| | - Claire E Stanley
- Plant-Soil Interactions, Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, CH-8046, Zürich, Switzerland
| | - Alinne Ambrósio
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute of Microbiology and Genetics, University of Goettingen and Goettingen Center for Molecular Biosciences (GZMB), Grisebachstr. 8, D-37077, Goettingen, Germany
| |
Collapse
|
14
|
Speth C, Rambach G, Lass-Flörl C, Howell PL, Sheppard DC. Galactosaminogalactan (GAG) and its multiple roles in Aspergillus pathogenesis. Virulence 2019; 10:976-983. [PMID: 30667338 PMCID: PMC8647848 DOI: 10.1080/21505594.2019.1568174] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aspergillus spp and particularly the species Aspergillus fumigatus are the causative agents of invasive aspergillosis, a progressive necrotizing pneumonia that occurs in immunocompromised patients. The limited efficacy of currently available antifungals has led to interest in a better understanding of the molecular mechanisms underlying the pathogenesis of invasive aspergillosis in order to identify new therapeutic targets for this devastating disease. The Aspergillus exopolysaccharide galactosaminogalactan (GAG) plays an important role in the pathogenesis of experimental invasive aspergillosis. The present review article summarizes our current understanding of GAG composition and synthesis and the molecular mechanisms whereby GAG promotes virulence. Promising directions for future research and the prospect of GAG as both a therapy and therapeutic target are reviewed.
Collapse
Affiliation(s)
- Cornelia Speth
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Günter Rambach
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria.,Christian Doppler Laboratory for Invasive Fungal Infections, Innsbruck, Austria
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Donald C Sheppard
- Departments of Medicine and of Microbiology and Immunology, McGill University, Montréal, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Canada
| |
Collapse
|
15
|
Manfiolli AO, Dos Reis TF, de Assis LJ, de Castro PA, Silva LP, Hori JI, Walker LA, Munro CA, Rajendran R, Ramage G, Goldman GH. Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surf 2018; 1:43-56. [PMID: 32743127 PMCID: PMC7389341 DOI: 10.1016/j.tcsw.2018.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
The main characteristic of biofilm formation is extracellular matrix (ECM) production. The cells within the biofilm are surrounded by ECM which provides structural integrity and protection. During an infection, this protection is mainly against cells of the immune system and antifungal drugs. A. fumigatus forms biofilms during static growth on a solid substratum and in chronic aspergillosis infections. It is important to understand how, and which, A. fumigatus signal transduction pathways are important for the adhesion and biofilm formation in a host during infection. Here we investigated the role of MAP kinases and protein phosphatases in biofilm formation. The loss of the MAP kinases MpkA, MpkC and SakA had an impact on the cell surface and the ECM during biofilm formation and reduced the adherence of A. fumigatus to polystyrene and fibronectin-coated plates. The phosphatase null mutants ΔsitA and ΔptcB, involved in regulation of MpkA and SakA phosphorylation, influenced cell wall carbohydrate exposure. Moreover, we characterized the A. fumigatus protein phosphatase PphA. The ΔpphA strain was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and reduced chitin, decreased conidia phagocytosis by Dictyostelium discoideum and reduced adhesion and biofilm formation. Finally, ΔpphA strain was avirulent in a murine model of invasive pulmonary aspergillosis and increased the released of tumor necrosis factor alpha (TNF-α) from bone marrow derived macrophages (BMDMs). These results show that MAP kinases and phosphatases play an important role in signaling pathways that regulate the composition of the cell wall, extracellular matrix production as well as adhesion and biofilm formation in A. fumigatus.
Collapse
Affiliation(s)
- Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana I Hori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Louise A Walker
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Carol A Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
16
|
Corrigendum. Cell Microbiol 2018; 20. [PMID: 29423935 DOI: 10.1111/cmi.12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|