1
|
De Niz M, Frachon E, Gobaa S, Bastin P. Spatial confinement of Trypanosoma brucei in microfluidic traps provides a new tool to study free swimming parasites. PLoS One 2023; 18:e0296257. [PMID: 38134042 PMCID: PMC10745224 DOI: 10.1371/journal.pone.0296257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma brucei is the causative agent of African trypanosomiasis and is transmitted by the tsetse fly (Glossina spp.). All stages of this extracellular parasite possess a single flagellum that is attached to the cell body and confers a high degree of motility. While several stages are amenable to culture in vitro, longitudinal high-resolution imaging of free-swimming parasites has been challenging, mostly due to the rapid flagellar beating that constantly twists the cell body. Here, using microfabrication, we generated various microfluidic devices with traps of different geometrical properties. Investigation of trap topology allowed us to define the one most suitable for single T. brucei confinement within the field of view of an inverted microscope while allowing the parasite to remain motile. Chips populated with V-shaped traps allowed us to investigate various phenomena in cultured procyclic stage wild-type parasites, and to compare them with parasites whose motility was altered upon knockdown of a paraflagellar rod component. Among the properties that we investigated were trap invasion, parasite motility, and the visualization of organelles labelled with fluorescent dyes. We envisage that this tool we have named "Tryp-Chip" will be a useful tool for the scientific community, as it could allow high-throughput, high-temporal and high-spatial resolution imaging of free-swimming T. brucei parasites.
Collapse
Affiliation(s)
- Mariana De Niz
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, INSERM U1201, Paris, France
| | - Emmanuel Frachon
- Institut Pasteur, Université de Paris, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Samy Gobaa
- Institut Pasteur, Université de Paris, Biomaterials and Microfluidics Core Facility, Paris, France
| | - Philippe Bastin
- Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Université de Paris, INSERM U1201, Paris, France
| |
Collapse
|
2
|
Ripp J, Kehrer J, Smyrnakou X, Tisch N, Tavares J, Amino R, Ruiz de Almodovar C, Frischknecht F. Malaria parasites differentially sense environmental elasticity during transmission. EMBO Mol Med 2021; 13:e13933. [PMID: 33666362 PMCID: PMC8033522 DOI: 10.15252/emmm.202113933] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Transmission of malaria-causing parasites to and by the mosquito relies on active parasite migration and constitutes bottlenecks in the Plasmodium life cycle. Parasite adaption to the biochemically and physically different environments must hence be a key evolutionary driver for transmission efficiency. To probe how subtle but physiologically relevant changes in environmental elasticity impact parasite migration, we introduce 2D and 3D polyacrylamide gels to study ookinetes, the parasite forms emigrating from the mosquito blood meal and sporozoites, the forms transmitted to the vertebrate host. We show that ookinetes adapt their migratory path but not their speed to environmental elasticity and are motile for over 24 h on soft substrates. In contrast, sporozoites evolved more short-lived rapid gliding motility for rapidly crossing the skin. Strikingly, sporozoites are highly sensitive to substrate elasticity possibly to avoid adhesion to soft endothelial cells on their long way to the liver. Hence, the two migratory stages of Plasmodium evolved different strategies to overcome the physical challenges posed by the respective environments and barriers they encounter.
Collapse
Affiliation(s)
- Johanna Ripp
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Jessica Kehrer
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Xanthoula Smyrnakou
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
- Gene Therapy for Hearing Impairment and DeafnessDepartment of OtolaryngologyHead & Neck SurgeryUniversity of Tübingen Medical CenterTübingenGermany
| | - Nathalie Tisch
- Biochemistry CenterHeidelberg UniversityHeidelbergGermany
- European Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Joana Tavares
- IBMC‐Institute for Molecular and Cell Biologyi3S ‐ Institute for Research and Innovation in HealthUniversity of PortoPortoPortugal
- Malaria Infection and Immunity UnitDepartment of Parasites and Insect VectorsInstitut PasteurParisFrance
| | - Rogerio Amino
- Malaria Infection and Immunity UnitDepartment of Parasites and Insect VectorsInstitut PasteurParisFrance
| | - Carmen Ruiz de Almodovar
- Biochemistry CenterHeidelberg UniversityHeidelbergGermany
- European Center for Angioscience (ECAS)Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Friedrich Frischknecht
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| |
Collapse
|
3
|
Abstract
Bioimage analysis (BIA) has historically helped study how and why cells move; biological experiments evolved in intimate feedback with the most classical image processing techniques because they contribute objectivity and reproducibility to an eminently qualitative science. Cell segmentation, tracking, and morphology descriptors are all discussed here. Using ameboid motility as a case study, these methods help us illustrate how proper quantification can augment biological data, for example, by choosing mathematical representations that amplify initially subtle differences, by statistically uncovering general laws or by integrating physical insight. More recently, the non-invasive nature of quantitative imaging is fertilizing two blooming fields: mechanobiology, where many biophysical measurements remain inaccessible, and microenvironments, where the quest for physiological relevance has exploded data size. From relief to remedy, this trend indicates that BIA is to become a main vector of biological discovery as human visual analysis struggles against ever more complex data.
Collapse
Affiliation(s)
- Aleix Boquet-Pujadas
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
- Sorbonne Université, Paris 75005, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS UMR3691, Paris, France
| | - Nancy Guillén
- Institut Pasteur, Bioimage Analysis Unit, 25 rue du Dr. Roux, Paris Cedex 15 75724, France
- Centre National de la Recherche Scientifique, CNRS ERL9195, Paris, France
| |
Collapse
|
4
|
Wack M, Wiegand T, Frischknecht F, Cavalcanti-Adam EA. An in vitro DNA Sensor-based Assay to Measure Receptor-specific Adhesion Forces of Eukaryotic Cells and Pathogens. Bio Protoc 2020; 10:e3733. [PMID: 33659394 DOI: 10.21769/bioprotoc.3733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/10/2020] [Accepted: 06/17/2020] [Indexed: 11/02/2022] Open
Abstract
Motility of eukaryotic cells or pathogens within tissues is mediated by the turnover of specific interactions with other cells or with the extracellular matrix. Biophysical characterization of these ligand-receptor adhesions helps to unravel the molecular mechanisms driving migration. Traction force microscopy or optical tweezers are typically used to measure the cellular forces exerted by cells on a substrate. However, the spatial resolution of traction force microscopy is limited to ~2 µm and performing experiments with optical traps is very time-consuming. Here we present the production of biomimetic surfaces that enable specific cell adhesion via synthetic ligands and at the same time monitor the transmitted forces by using molecular tension sensors. The ligands were coupled to double-stranded DNA probes with defined force thresholds for DNA unzipping. Receptor-mediated forces in the pN range are thereby semi-quantitatively converted into fluorescence signals, which can be detected by standard fluorescence microscopy at the resolution limit (~0.2 µm). The modular design of the assay allows to vary the presented ligands and the mechanical strength of the DNA probes, which provides a number of possibilities to probe the adhesion of different eukaryotic cell types and pathogens and is exemplified here with osteosarcoma cells and Plasmodium berghei Sporozoites.
Collapse
Affiliation(s)
- Maurizio Wack
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - Tina Wiegand
- Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Heidelberg, Germany
| | - E Ada Cavalcanti-Adam
- Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Timmermann M, Lukat N, Schneider LP, Shields CW, López GP, Selhuber-Unkel C. Migration of Microparticle-Containing Amoeba through Constricted Environments. ACS Biomater Sci Eng 2020; 6:889-897. [PMID: 32215319 PMCID: PMC7082834 DOI: 10.1021/acsbiomaterials.9b00496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 11/30/2019] [Indexed: 12/28/2022]
Abstract
![]()
In many situations,
cells migrate through tiny orifices.
Examples
include the extravasation of immune cells from the bloodstream for
fighting infections, the infiltration of cancer cells during metastasis,
and the migration of human pathogens. An extremely motile and medically
relevant type of human pathogen is Acanthamoeba castellanii. In the study presented here, we investigated how a combination
of microparticles and microstructured interfaces controls the migration
of A. castellanii trophozoites. The
microinterfaces comprised well-defined micropillar arrays, and the
trophozoites easily migrated through the given constrictions by adapting
the shape and size of their intracellular vacuoles and by adapting
intracellular motion. After feeding the trophozoite cells in microinterfaces
with synthetic, stiff microparticles of various sizes and shapes,
their behavior changed drastically: if the particles were smaller
than the micropillar gap, migration was still possible. If the cells
incorporated particles larger than the pillar gap, they could become
immobilized but could also display remarkable problem-solving capabilities.
For example, they turned rod-shaped microparticles such that their
short axis fit through the pillar gap or they transported the particles
above the structure. As migration is a crucial contribution to A. castellanii pathogenicity and is also relevant
to other biological processes in microenvironments, such as cancer
metastasis, our results provide an interesting strategy for controlling
the migration of cells containing intracellular particles by microstructured
interfaces that serve as migration-limiting environments.
Collapse
Affiliation(s)
- Michael Timmermann
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Nils Lukat
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - Lindsay P Schneider
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| | - C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Durham, North Carolina 27708, United States.,Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gabriel P López
- NSF Research Triangle Materials Research Science and Engineering Center, Durham, North Carolina 27708, United States.,Center for Biomedical Engineering, Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Christine Selhuber-Unkel
- Institute of Materials Science, Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|
6
|
Spreng B, Fleckenstein H, Kübler P, Di Biagio C, Benz M, Patra P, Schwarz US, Cyrklaff M, Frischknecht F. Microtubule number and length determine cellular shape and function in Plasmodium. EMBO J 2019; 38:e100984. [PMID: 31368598 PMCID: PMC6669926 DOI: 10.15252/embj.2018100984] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 04/12/2019] [Accepted: 04/26/2019] [Indexed: 11/27/2022] Open
Abstract
Microtubules are cytoskeletal filaments essential for many cellular processes, including establishment and maintenance of polarity, intracellular transport, division and migration. In most metazoan cells, the number and length of microtubules are highly variable, while they can be precisely defined in some protozoan organisms. However, in either case the significance of these two key parameters for cells is not known. Here, we quantitatively studied the impact of modulating microtubule number and length in Plasmodium, the protozoan parasite causing malaria. Using a gene deletion and replacement strategy targeting one out of two α-tubulin genes, we show that chromosome segregation proceeds in the oocysts even in the absence of microtubules. However, fewer and shorter microtubules severely impaired the formation, motility and infectivity of Plasmodium sporozoites, the forms transmitted by the mosquito, which usually contain 16 microtubules. We found that α-tubulin expression levels directly determined the number of microtubules, suggesting a high nucleation barrier as supported by a mathematical model. Infectious sporozoites were only formed in parasite lines featuring at least 10 microtubules, while parasites with 9 or fewer microtubules failed to transmit.
Collapse
Affiliation(s)
- Benjamin Spreng
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Hannah Fleckenstein
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Patrick Kübler
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Claudia Di Biagio
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Madlen Benz
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Pintu Patra
- Institute for Theoretical Physics and BioquantHeidelberg UniversityHeidelbergGermany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioquantHeidelberg UniversityHeidelbergGermany
| | - Marek Cyrklaff
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| | - Friedrich Frischknecht
- Integrative ParasitologyCenter for Infectious DiseasesHeidelberg University Medical SchoolHeidelbergGermany
| |
Collapse
|
7
|
Ludidi A, Baloyi MC, Khathi A, Sibiya NH, Ngubane PS. The effects of Momordica balsamina methanolic extract on haematological function in streptozotocin-induced diabetic rats: Effects on selected markers. Biomed Pharmacother 2019; 116:108925. [PMID: 31112874 DOI: 10.1016/j.biopha.2019.108925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic hyperglycaemia-induced haematological changes increase the risk of cardiovascular complications in diabetic patients. The administration of insulin injection as a bolus is accompanied with increased blood viscosity, which is not recommended for patients with congestive heart failure. Momordica balsamina methanolic extract (MB) has previously been shown to possess anti-hyperglycaemic and renal dysfunction ameliorative effects; however, the haematological effects of MB have not been shown. The current study therefore, investigated the short-term effects MB on selected haematological parameters in streptozotocin (STZ)-induced diabetic rats. METHODS Briefly, the air-dried Momordica balsamina leaves were sequentially extracted with methanol to yield a methanolic extract. STZ-induced diabetic rats were divided into untreated and treated groups with insulin (170 μg kg-1 s.c.) and metformin (500 mg kg-1 p.o.) MB (250 mg kg-1 p.o.). MB was administered twice daily for the 5-week experimental period. Blood glucose concentration was monitored weekly. Animals were sacrificed terminally. Blood and kidneys were collected for haematological and biochemical analysis respectively. RESULTS Treatment with MB significantly decreased blood glucose concentration and improved erythropoietin secretion, thus significantly increasing red blood cell production in treated diabetic animals by comparison to untreated animals. MB also significantly improved haemoglobin concentrations and moderately increased erythrocyte indices specifically, mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC) and mean corpuscular haemoglobin (MCH) to no significance by comparison to untreated diabetic animals. MB treatment decreased the oxidative stress evoked by the induction of diabetes while improving the antioxidant status of treated animals by comparison to untreated animals respectively. CONCLUSIONS Administration of Momordica balsamina methanolic extract protects against some injurious haematological changes induced by hyperglycaemia, which may reduce the risks of cardiovascular complications.
Collapse
Affiliation(s)
- A Ludidi
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa.
| | - M C Baloyi
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| | - A Khathi
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| | - N H Sibiya
- Department of Pharmacy, Rhodes University, 6140, South Africa
| | - P S Ngubane
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| |
Collapse
|
8
|
De Niz M, Meehan GR, Brancucci NM, Marti M, Rotureau B, Figueiredo LM, Frischknecht F. Intravital imaging of host-parasite interactions in skin and adipose tissues. Cell Microbiol 2019; 21:e13023. [PMID: 30825872 PMCID: PMC6590052 DOI: 10.1111/cmi.13023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Intravital microscopy allows the visualisation of how pathogens interact with host cells and tissues in living animals in real time. This method has enabled key advances in our understanding of host-parasite interactions under physiological conditions. A combination of genetics, microscopy techniques, and image analysis have recently facilitated the understanding of biological phenomena in living animals at cellular and subcellular resolution. In this review, we summarise findings achieved by intravital microscopy of the skin and adipose tissues upon infection with various parasites, and we present a view into possible future applications of this method.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler GroupUniversity of BernBernSwitzerland
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Gavin R. Meehan
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Nicolas M.B. Brancucci
- Malaria Gene Regulation Unit, Department of Medical Parasitology and Infection BiologySwiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Matthias Marti
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201Institut PasteurParisFrance
| | - Luisa M. Figueiredo
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisbonPortugal
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious DiseasesUniversity of Heidelberg Medical SchoolHeidelbergGermany
| |
Collapse
|
9
|
Anti-bacterial susceptibility profiling of Weissella confusa DD_A7 against the multidrug-resistant ESBL-positive E. coli. Microb Pathog 2019; 128:119-130. [DOI: 10.1016/j.micpath.2018.12.048] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 11/19/2018] [Accepted: 12/28/2018] [Indexed: 01/27/2023]
|
10
|
Douglas RG, Reinig M, Neale M, Frischknecht F. Screening for potential prophylactics targeting sporozoite motility through the skin. Malar J 2018; 17:319. [PMID: 30170589 PMCID: PMC6119338 DOI: 10.1186/s12936-018-2469-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/27/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Anti-malarial compounds have not yet been identified that target the first obligatory step of infection in humans: the migration of Plasmodium sporozoites in the host dermis. This movement is essential to find and invade a blood vessel in order to be passively transported to the liver. Here, an imaging screening pipeline was established to screen for compounds capable of inhibiting extracellular sporozoites. METHODS Sporozoites expressing the green fluorescent protein were isolated from infected Anopheles mosquitoes, incubated with compounds from two libraries (MMV Malaria Box and a FDA-approved library) and imaged. Effects on in vitro motility or morphology were scored. In vivo efficacy of a candidate drug was investigated by treating mice ears with a gel prior to infectious mosquito bites. Motility was analysed by in vivo imaging and the progress of infection was monitored by daily blood smears. RESULTS Several compounds had a pronounced effect on in vitro sporozoite gliding or morphology. Notably, monensin sodium potently affected sporozoite movement while gramicidin S resulted in rounding up of sporozoites. However, pre-treatment of mice with a topical gel containing gramicidin did not reduce sporozoite motility and infection. CONCLUSIONS This approach shows that it is possible to screen libraries for inhibitors of sporozoite motility and highlighted the paucity of compounds in currently available libraries that inhibit this initial step of a malaria infection. Screening of diverse libraries is suggested to identify more compounds that could serve as leads in developing 'skin-based' malaria prophylactics. Further, strategies need to be developed that will allow compounds to effectively penetrate the dermis and thereby prevent exit of sporozoites from the skin.
Collapse
Affiliation(s)
- Ross G Douglas
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| | - Miriam Reinig
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Matthew Neale
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University Medical School, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.
| |
Collapse
|