1
|
Ng’ang’a PN, Folz J, Kucher S, Roderer D, Xu Y, Sitsel O, Belyy A, Prumbaum D, Kühnemuth R, Assafa TE, Dong M, Seidel CAM, Bordignon E, Raunser S. Multistate kinetics of the syringe-like injection mechanism of Tc toxins. SCIENCE ADVANCES 2025; 11:eadr2019. [PMID: 39752508 PMCID: PMC11698121 DOI: 10.1126/sciadv.adr2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/12/2024] [Indexed: 01/06/2025]
Abstract
Tc toxins are pore-forming virulence factors of many pathogenic bacteria. Following pH-induced conformational changes, they perforate the target membrane like a syringe to translocate toxic enzymes into a cell. Although this complex transformation has been structurally well studied, the reaction pathway and the resulting temporal evolution have remained elusive. We used an integrated biophysical approach to monitor prepore-to-pore transition and found a reaction time of ~30 hours for a complete transition. We show two asynchronous general steps of the process, shell opening and channel ejection, with the overall reaction pathway being a slow multistep process involving three intermediates. Liposomes, an increasingly high pH, or receptors facilitate shell opening, which is directly correlated with an increased rate of the prepore-to-pore transition. Channel ejection is a near-instantaneous process which occurs with a transition time of <60 milliseconds. Understanding the mechanism of action of Tc toxins and unveiling modulators of the kinetics are key steps toward their application as biomedical devices or biopesticides.
Collapse
Affiliation(s)
- Peter Njenga Ng’ang’a
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Julian Folz
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Svetlana Kucher
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Daniel Roderer
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ying Xu
- Department of Urology, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Oleg Sitsel
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alexander Belyy
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Ralf Kühnemuth
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tufa E. Assafa
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA, USA
- Department of Surgery and Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Claus A. M. Seidel
- Chair of Molecular Physical Chemistry, Heinrich-Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211 Geneva, Switzerland
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
2
|
Martin CL, Hill JH, Aller SG. Host Tropism and Structural Biology of ABC Toxin Complexes. Toxins (Basel) 2024; 16:406. [PMID: 39330864 PMCID: PMC11435725 DOI: 10.3390/toxins16090406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
ABC toxin complexes are a class of protein toxin translocases comprised of a multimeric assembly of protein subunits. Each subunit displays a unique composition, contributing to the formation of a syringe-like nano-machine with natural cargo carrying, targeting, and translocation capabilities. Many of these toxins are insecticidal, drawing increasing interest in agriculture for use as biological pesticides. The A subunit (TcA) is the largest subunit of the complex and contains domains associated with membrane permeation and targeting. The B and C subunits, TcB and TcC, respectively, package into a cocoon-like structure that contains a toxic peptide and are coupled to TcA to form a continuous channel upon final assembly. In this review, we outline the current understanding and gaps in the knowledge pertaining to ABC toxins, highlighting seven published structures of TcAs and how these structures have led to a better understanding of the mechanism of host tropism and toxin translocation. We also highlight similarities and differences between homologues that contribute to variations in host specificity and conformational change. Lastly, we review the biotechnological potential of ABC toxins as both pesticides and cargo-carrying shuttles that enable the transport of peptides into cells.
Collapse
Affiliation(s)
- Cole L Martin
- Graduate Biomedical Sciences Pathobiology, Physiology and Pharmacology Theme, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - John H Hill
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Stephen G Aller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
3
|
Parra M, Coppola M, Hellmann H. PDX proteins from Arabidopsis thaliana as novel substrates of cathepsin B: implications for vitamin B 6 biosynthesis regulation. FEBS J 2024; 291:2372-2387. [PMID: 38431778 DOI: 10.1111/febs.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Vitamin B6 is a critical molecule for metabolism, development, and stress sensitivity in plants. It is a cofactor for numerous biochemical reactions, can serve as an antioxidant, and has the potential to increase tolerance against both biotic and abiotic stressors. Due to the importance of vitamin B6, its biosynthesis is likely tightly regulated. Plants can synthesize vitamin B6 de novo via the concerted activity of Pyridoxine Biosynthesis Protein 1 (PDX1) and PDX2. Previously, PDX proteins have been identified as targets for ubiquitination, indicating they could be marked for degradation by two highly conserved pathways: the Ubiquitin Proteasome Pathway (UPP) and the autophagy pathway. Initial experiments show that PDXs are in fact degraded, but surprisingly, in a ubiquitin-independent manner. Inhibitor studies pointed toward cathepsin B, a conserved lysosomal cysteine protease, which is implicated in both programed cell death and autophagy in humans and plants. In plants, cathepsin Bs are poorly described, and no confirmed substrates have been identified. Here, we present PDX proteins from Arabidopsis thaliana as interactors and substrates of a plant Cathepsin B. These findings not only describe a novel cathepsin B substrate in plants, but also provide new insights into how plants regulate de novo biosynthesis of vitamin B6.
Collapse
Affiliation(s)
- Marcelina Parra
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Schmidt G. Some Examples of Bacterial Toxins as Tools. Toxins (Basel) 2024; 16:202. [PMID: 38787054 PMCID: PMC11125981 DOI: 10.3390/toxins16050202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
Pathogenic bacteria produce diverse protein toxins to disturb the host's defenses. This includes the opening of epithelial barriers to establish bacterial growth in deeper tissues of the host and to modulate immune cell functions. To achieve this, many toxins share the ability to enter mammalian cells, where they catalyze the modification of cellular proteins. The enzymatic activity is diverse and ranges from ribosyl- or glycosyl-transferase activity, the deamidation of proteins, and adenylate-cyclase activity to proteolytic cleavage. Protein toxins are highly active enzymes often with tight specificity for an intracellular protein or a protein family coupled with the intrinsic capability of entering mammalian cells. A broad understanding of their molecular mechanisms established bacterial toxins as powerful tools for cell biology. Both the enzymatic part and the pore-forming/protein transport capacity are currently used as tools engineered to study signaling pathways or to transport cargo like labeled compounds, nucleic acids, peptides, or proteins directly into the cytosol. Using several representative examples, this review is intended to provide a short overview of the state of the art in the use of bacterial toxins or parts thereof as tools.
Collapse
Affiliation(s)
- Gudula Schmidt
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Ng'ang'a PN, Siukstaite L, Lang AE, Bakker H, Römer W, Aktories K, Schmidt G. Involvement of N-glycans in binding of Photorhabdus luminescens Tc toxin. Cell Microbiol 2021; 23:e13326. [PMID: 33720490 DOI: 10.1111/cmi.13326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/20/2022]
Abstract
Photorhabdus luminescens Tc toxins are large tripartite ABC-type toxin complexes, composed of TcA, TcB and TcC proteins. Tc toxins are widespread and have shown a tropism for a variety of targets including insect, mammalian and human cells. However, their receptors and the specific mechanisms of uptake into target cells remain unknown. Here, we show that the TcA protein TcdA1 interacts with N-glycans, particularly Lewis X/Y antigens. This is confirmed using N-acetylglucosamine transferase I (Mgat1 gene product)-deficient Chinese hamster ovary (CHO) Lec1 cells, which are highly resistant to intoxication by the Tc toxin complex most likely due to the absence of complex N-glycans. Restoring Mgat1 gene activity, and hence complex N-glycan biosynthesis, recapitulated the sensitivity of these cells to the toxin. Exogenous addition of Lewis X trisaccharide partially inhibits intoxication in wild-type cells. Additionally, sialic acid also largely reduced binding of the Tc toxin. Moreover, proteolytic activation of TcdA1 alters glycan-binding and uptake into target cells. The data suggest that TcdA1-binding is most likely multivalent, and carbohydrates probably work cooperatively to facilitate binding and intoxication.
Collapse
Affiliation(s)
- Peter Njenga Ng'ang'a
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Alexander E Lang
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hans Bakker
- Institut für Klinische Biochemie, Medizinische Hochschule Hannover, MHH, Hannover, Germany
| | - Winfried Römer
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany.,BIOSS-Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Zhang Y, Liao Y, Chen C, Sun W, Sun X, Liu Y, Xu E, Lai M, Zhang H. p38-regulated FOXC1 stability is required for colorectal cancer metastasis. J Pathol 2019; 250:217-230. [PMID: 31650548 DOI: 10.1002/path.5362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
Aberrant expression of forkhead box C1 (FOXC1) promotes tumor metastasis in multiple human malignant tumors. However, the upstream modulating mode and downstream molecular mechanism of FOXC1 in metastasis of colorectal cancer (CRC) remain unclear. Herein we describe a systematic analysis of FOXC1 expression and prognosis in CRC performed on our clinical data and public databases, which indicated that FOXC1 upregulation in CRC samples was significantly associated with poor prognosis. FOXC1 knockdown inhibited migration and invasion, whereas FOXC1 overexpression caused the opposite phenotype in vitro and in vivo. Furthermore, MMP10, SOX4 and SOX13 were verified as the target genes of FOXC1 for promoting CRC metastasis. MMP10 was demonstrated as the direct target and mediator of FOXC1. Interestingly, Ser241 and Ser272 of FOXC1 were identified as the key sites to interact with p38 and phosphorylation, which were critically required for maintaining the stability of FOXC1 protein. Moreover, FOXC1 was dephosphorylated by protein phosphatase 2A and phosphorylated by p38, which maintained FOXC1 protein stability through inhibiting ubiquitination. Expression of p38 was correlated with FOXC1 and MMP10 expression, indirectly indicating that FOXC1 was regulated by p38 MAPK. Therefore, FOXC1 is strongly suggested as a pro-metastatic gene in CRC by transcriptionally activating MMP10, SOX4 and SOX13; p38 interacts with and phosphorylates the Ser241 and ser272 sites of FOXC1 to maintain its stability by inhibiting ubiquitination and degradation. In conclusion, the protein stability of FOXC1 mediated by p38 contributes to the metastatic effect in CRC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Yan Liao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Chaoyi Chen
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Wenjie Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Zhejiang, PR China
| | - Yuan Liu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| |
Collapse
|
7
|
Ng Ang A PN, Ebner JK, Plessner M, Aktories K, Schmidt G. Engineering Photorhabdus luminescens toxin complex (PTC) into a recombinant injection nanomachine. Life Sci Alliance 2019; 2:e201900485. [PMID: 31540947 PMCID: PMC6756610 DOI: 10.26508/lsa.201900485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/10/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022] Open
Abstract
Engineering delivery systems for proteins and peptides into mammalian cells is an ongoing challenge for cell biological studies as well as for therapeutic approaches. Photorhabdus luminescens toxin complex (PTC) is a heterotrimeric protein complex able to deliver diverse protein toxins into mammalian cells. We engineered the syringe-like nanomachine for delivery of protein toxins from different species. In addition, we loaded the highly active copepod luciferase Metridia longa M-Luc7 for accurate quantification of injected molecules. We suggest that besides the probable size limitation, the charge of the cargo also influences the efficiency of packing and transport into mammalian cells. Our data show that the PTC constitutes a powerful system to inject recombinant proteins, peptides, and potentially, other molecules into mammalian cells. In addition, in contrast to other protein transporters based on pore formation, the closed, compact structure of the PTC may protect cargo from degradation.
Collapse
Affiliation(s)
- Peter Njenga Ng Ang A
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julia K Ebner
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School for Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Matthias Plessner
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Aktories
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|