1
|
Zeng G, Xu X, Kok YJ, Deng FS, Ling Chow EW, Gao J, Bi X, Wang Y. Cytochrome c regulates hyphal morphogenesis by interfering with cAMP-PKA signaling in Candida albicans. Cell Rep 2023; 42:113473. [PMID: 37980562 DOI: 10.1016/j.celrep.2023.113473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023] Open
Abstract
In the human fungal pathogen Candida albicans, invasive hyphal growth is a well-recognized virulence trait. We employed transposon-mediated genome-wide mutagenesis, revealing that inactivating CTM1 blocks hyphal growth. CTM1 encodes a lysine (K) methyltransferase, which trimethylates cytochrome c (Cyc1) at K79. Mutants lacking CTM1 or expressing cyc1K79A grow as yeast under hyphae-inducing conditions, indicating that unmethylated Cyc1 suppresses hyphal growth. Transcriptomic analyses detected increased levels of the hyphal repressor NRG1 and decreased levels of hyphae-specific genes in ctm1Δ/Δ and cyc1K79A mutants, suggesting cyclic AMP (cAMP)-protein kinase A (PKA) signaling suppression. Co-immunoprecipitation and in vitro kinase assays demonstrated that unmethylated Cyc1 inhibits PKA kinase activity. Surprisingly, hyphae-defective ctm1Δ/Δ and cyc1K79A mutants remain virulent in mice due to accelerated proliferation. Our results unveil a critical role for cytochrome c in maintaining the virulence of C. albicans by orchestrating proliferation, growth mode, and metabolism. Importantly, this study identifies a biological function for lysine methylation on cytochrome c.
Collapse
Affiliation(s)
- Guisheng Zeng
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore.
| | - Xiaoli Xu
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore
| | - Yee Jiun Kok
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Fu-Sheng Deng
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| | - Eve Wai Ling Chow
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore
| | - Jiaxin Gao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuezhi Bi
- Bioprocessing Technology Institute, 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore; Duke-NUS Medical School, National University of Singapore, Singapore 169857, Singapore
| | - Yue Wang
- A(∗)STAR Infectious Diseases Labs (A(∗)STAR ID Labs), Agency for Science, Technology and Research (A(∗)STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| |
Collapse
|
2
|
Case NT, Westman J, Hallett MT, Plumb J, Farheen A, Maxson ME, MacAlpine J, Liston SD, Hube B, Robbins N, Whitesell L, Grinstein S, Cowen LE. Respiration supports intraphagosomal filamentation and escape of Candida albicans from macrophages. mBio 2023; 14:e0274523. [PMID: 38038475 PMCID: PMC10746240 DOI: 10.1128/mbio.02745-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
IMPORTANCE Candida albicans is a leading human fungal pathogen that often causes life-threatening infections in immunocompromised individuals. The ability of C. albicans to transition between yeast and filamentous forms is key to its virulence, and this occurs in response to many host-relevant cues, including engulfment by host macrophages. While previous efforts identified C. albicans genes required for filamentation in other conditions, the genes important for this morphological transition upon internalization by macrophages remained largely enigmatic. Here, we employed a functional genomic approach to identify genes that enable C. albicans filamentation within macrophages and uncovered a role for the mitochondrial ribosome, respiration, and the SNF1 AMP-activated kinase complex. Additionally, we showed that glucose uptake and glycolysis by macrophages support C. albicans filamentation. This work provides insights into the metabolic dueling that occurs during the interaction of C. albicans with macrophages and identifies vulnerabilities in C. albicans that could serve as promising therapeutic targets.
Collapse
Affiliation(s)
- Nicola T. Case
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Johannes Westman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Jonathan Plumb
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aiman Farheen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sean D. Liston
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Luke Whitesell
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Keenan Research Center of the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Hosseini ST, Nemati F. Identification of GUCA2A and COL3A1 as prognostic biomarkers in colorectal cancer by integrating analysis of RNA-Seq data and qRT-PCR validation. Sci Rep 2023; 13:17086. [PMID: 37816854 PMCID: PMC10564945 DOI: 10.1038/s41598-023-44459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
By 2030, it is anticipated that there will be 2.2 million new instances of colorectal cancer worldwide, along with 1.1 million yearly deaths. Therefore, it is critical to develop novel biomarkers that could help in CRC early detection. We performed an integrated analysis of four RNA-Seq data sets and TCGA datasets in this study to find novel biomarkers for diagnostic, prediction, and as potential therapeutic for this malignancy, as well as to determine the molecular mechanisms of CRC carcinogenesis. Four RNA-Seq datasets of colorectal cancer were downloaded from the Sequence Read Archive (SRA) database. The metaSeq package was used to integrate differentially expressed genes (DEGs). The protein-protein interaction (PPI) network of the DEGs was constructed using the string platform, and hub genes were identified using the cytoscape software. The gene ontology and KEGG pathway enrichment analysis were performed using enrichR package. Gene diagnostic sensitivity and its association to clinicopathological characteristics were demonstrated by statistical approaches. By using qRT-PCR, GUCA2A and COL3A1 were examined in colon cancer and rectal cancer. We identified 5037 differentially expressed genes, including (4752 upregulated, 285 downregulated) across the studies between CRC and normal tissues. Gene ontology and KEGG pathway analyses showed that the highest proportion of up-regulated DEGs was involved in RNA binding and RNA transport. Integral component of plasma membrane and mineral absorption pathways were identified as containing down-regulated DEGs. Similar expression patterns for GUCA2A and COL3A1 were seen in qRT-PCR and integrated RNA-Seq analysis. Additionally, this study demonstrated that GUCA2A and COL3A1 may play a significant role in the development of CRC.
Collapse
Affiliation(s)
- Seyed Taleb Hosseini
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran
- Young Researchers and Elite Club, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran
| | - Farkhondeh Nemati
- Department of Biology, Faculty of Basic Sciences, Qaemshahr Branch, Islamic Azad University, Mazandaran, Iran.
| |
Collapse
|
4
|
Britton SJ, Rogers LJ, White JS, Maskell DL. HYPHAEdelity: a quantitative image analysis tool for assessing peripheral whole colony filamentation. FEMS Yeast Res 2022; 22:6832773. [PMID: 36398755 PMCID: PMC9697609 DOI: 10.1093/femsyr/foac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The yeast Saccharomyces cerevisiae, also known as brewer's yeast, can undergo a reversible stress-responsive transition from individual ellipsoidal cells to chains of elongated cells in response to nitrogen- or carbon starvation. Whole colony morphology is frequently used to evaluate phenotypic switching response; however, quantifying two-dimensional top-down images requires each pixel to be characterized as belonging to the colony or background. While feasible for a small number of colonies, this labor-intensive assessment process is impracticable for larger datasets. The software tool HYPHAEdelity has been developed to semi-automate the assessment of two-dimensional whole colony images and quantify the magnitude of peripheral whole colony yeast filamentation using image analysis tools intrinsic to the OpenCV Python library. The software application functions by determining the total area of filamentous growth, referred to as the f-measure, by subtracting the area of the inner colony boundary from the outer-boundary area associated with hyphal projections. The HYPHAEdelity application was validated against automated and manually pixel-counted two-dimensional top-down images of S. cerevisiae colonies exhibiting varying degrees of filamentation. HYPHAEdelity's f-measure results were comparable to areas determined through a manual pixel enumeration method and found to be more accurate than other whole colony filamentation software solutions.
Collapse
Affiliation(s)
- Scott J Britton
- Corresponding author: Institute for Biological Chemistry, Biophysics and Bioengineering, John Muir Building, Heriot-Watt University, Riccarton, Edinburgh, Scotland, United Kingdom, EH14 4AS. Tel: +32470205380; E-mail:
| | | | - Jane S White
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| | - Dawn L Maskell
- Institute of Biological Chemistry, Biophysics, and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom EH14 4AS
| |
Collapse
|
5
|
Lachat J, Pascault A, Thibaut D, Le Borgne R, Verbavatz JM, Weiner A. Trans-cellular tunnels induced by the fungal pathogen Candida albicans facilitate invasion through successive epithelial cells without host damage. Nat Commun 2022; 13:3781. [PMID: 35773250 PMCID: PMC9246882 DOI: 10.1038/s41467-022-31237-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
The opportunistic fungal pathogen Candida albicans is normally commensal, residing in the mucosa of most healthy individuals. In susceptible hosts, its filamentous hyphal form can invade epithelial layers leading to superficial or severe systemic infection. Although invasion is mainly intracellular, it causes no apparent damage to host cells at early stages of infection. Here, we investigate C. albicans invasion in vitro using live-cell imaging and the damage-sensitive reporter galectin-3. Quantitative single cell analysis shows that invasion can result in host membrane breaching at different stages and host cell death, or in traversal of host cells without membrane breaching. Membrane labelling and three-dimensional 'volume' electron microscopy reveal that hyphae can traverse several host cells within trans-cellular tunnels that are progressively remodelled and may undergo 'inflations' linked to host glycogen stores. Thus, C. albicans early invasion of epithelial tissues can lead to either host membrane breaching or trans-cellular tunnelling.
Collapse
Affiliation(s)
- Joy Lachat
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Alice Pascault
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Delphine Thibaut
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France
| | - Rémi Le Borgne
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
| | | | - Allon Weiner
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, 75013, Paris, France.
| |
Collapse
|
6
|
Towards a Fungal Science That Is Independent of Researchers’ Gender. J Fungi (Basel) 2022; 8:jof8070675. [PMID: 35887432 PMCID: PMC9321353 DOI: 10.3390/jof8070675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 02/04/2023] Open
Abstract
The main drivers of gender mainstreaming in basic and clinical research appear to be funding agencies and scientific journals. Some funding agencies have already recognized the importance of their actions for the global development of ideas in science, but further targeted efforts are needed. The challenges for women scientists in fungal research appear to be similar to those in other science, technology, engineering, and mathematics disciplines, although the gender gap in mycology publishing appears to be less pronounced; however, women are underrepresented as last (corresponding) authors. Two examples of best practices to bridge the gap have been promoted in the fungal community: “power hour” and a central resource database for women researchers of fungi and oomycetes. A more balanced ratio of women researchers among (plenary) session speakers, (plenary) session chairs, and committee members at the recent fungal genetics conference is an encouraging sign that the gender gap can be closed. The editorial policy of some journals follows the guidance “Sex and Gender Equality in Research,” and other journals should follow, and indicate the gender ratio among authors and reviewers.
Collapse
|
7
|
The Multifaceted Role of Mating Type of the Fungus and Sex of the Host in Studies of Fungal Infections in Humans. J Fungi (Basel) 2022; 8:jof8050461. [PMID: 35628717 PMCID: PMC9145136 DOI: 10.3390/jof8050461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
This review discusses the inclusion of sex and gender variables in studies of fungal infections in humans at the pathogen, host, and antifungal trial levels. The mating type of some fungi, or perhaps more likely the absence of the other, appears to be associated with some infections. Sexual and parasexual reproduction of some fungi is an important mechanism for the development of antifungal drug resistance. Host sex or gender influences the incidence of some infections such as aspergillosis, cryptococcosis, paracoccidioidomycosis, dermatophytosis, and candidiasis due to differences in immune response, behavior, and awareness for early detection and treatment. Participant sex (and age) is relevant not only in clinical antifungal trials but also in preclinical studies. The dimensions of sex and gender are important determinants throughout the fungal infection process and in approaches to prevent or treat these infections, as well as in development of antifungal drugs. Failure to consider sex and gender may be detrimental to the holistic understanding of the processes involved in fungal infection.
Collapse
|
8
|
Li M, Liu Z, Song J, Wang T, Wang H, Wang Y, Guo J. Identification of Down-Regulated ADH1C is Associated With Poor Prognosis in Colorectal Cancer Using Bioinformatics Analysis. Front Mol Biosci 2022; 9:791249. [PMID: 35300114 PMCID: PMC8921497 DOI: 10.3389/fmolb.2022.791249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/08/2022] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the second most deadly cancer in the whole world, with the underlying mechanisms largely indistinct. Therefore, we aimed to identify significant pathways and genes involved in the initiation, formation and poor prognosis of CRC using bioinformatics methods. In this study, we compared gene expression profiles of CRC cases with those from normal colorectal tissues from three chip datasets (GSE33113, GSE23878 and GSE41328) to identify 105 differentially expressed genes (DEGs) that were common to the three datasets. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the highest proportion of up-regulated DEGs was involved in extracellular region and cytokine-cytokine receptor interaction pathways. Integral components of membrane and bile secretion pathways were identified as containing down-regulated DEGs. 13 hub DEGs were chosen and their expression were further validated by GEPIA. Only four DEGs (ADH1C, CLCA4, CXCL8 and GUCA2A) were associated with a significantly lower overall survival after the prognosis analysis. Lower ADH1C protein level and higher CXCL8 protein level were verified by immunohistochemical staining and western blot in clinical CRC and normal colorectal tissues. In conclusion, our study indicated that the extracellular tumor microenvironment and bile metabolism pathways play critical roles in the formation and progression of CRC. Furthermore, we confirmed ADH1C being down-regulated in CRC and reported ADH1C as a prognostic predictor for the first time.
Collapse
Affiliation(s)
- Ming Li
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Ziming Liu
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Jia Song
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Tian Wang
- College of Clinical Medicine, Hebei University, Baoding, China
| | - Hongjie Wang
- School of Basic Medical Sciences, Hebei University, Baoding, China
- Affiliated Hospital of Hebei University, Baoding, China
| | - Yanan Wang
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
- *Correspondence: Yanan Wang, ; Jiguang Guo,
| | - Jiguang Guo
- School of Basic Medical Sciences, Hebei University, Baoding, China
- *Correspondence: Yanan Wang, ; Jiguang Guo,
| |
Collapse
|
9
|
Codjoe JM, Miller K, Haswell ES. Plant cell mechanobiology: Greater than the sum of its parts. THE PLANT CELL 2022; 34:129-145. [PMID: 34524447 PMCID: PMC8773992 DOI: 10.1093/plcell/koab230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/09/2021] [Indexed: 05/04/2023]
Abstract
The ability to sense and respond to physical forces is critical for the proper function of cells, tissues, and organisms across the evolutionary tree. Plants sense gravity, osmotic conditions, pathogen invasion, wind, and the presence of barriers in the soil, and dynamically integrate internal and external stimuli during every stage of growth and development. While the field of plant mechanobiology is growing, much is still poorly understood-including the interplay between mechanical and biochemical information at the single-cell level. In this review, we provide an overview of the mechanical properties of three main components of the plant cell and the mechanoperceptive pathways that link them, with an emphasis on areas of complexity and interaction. We discuss the concept of mechanical homeostasis, or "mechanostasis," and examine the ways in which cellular structures and pathways serve to maintain it. We argue that viewing mechanics and mechanotransduction as emergent properties of the plant cell can be a useful conceptual framework for synthesizing current knowledge and driving future research.
Collapse
Affiliation(s)
- Jennette M Codjoe
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | - Kari Miller
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St Louis, St Louis, Missouri, 63130, USA
| | | |
Collapse
|
10
|
Westman J, Plumb J, Licht A, Yang M, Allert S, Naglik JR, Hube B, Grinstein S, Maxson ME. Calcium-dependent ESCRT recruitment and lysosome exocytosis maintain epithelial integrity during Candida albicans invasion. Cell Rep 2022; 38:110187. [PMID: 34986345 PMCID: PMC8755444 DOI: 10.1016/j.celrep.2021.110187] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 12/07/2021] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is both a commensal and an opportunistic fungal pathogen. Invading hyphae of C. albicans secrete candidalysin, a pore-forming peptide toxin. To prevent cell death, epithelial cells must protect themselves from direct damage induced by candidalysin and by the mechanical forces exerted by expanding hyphae. We identify two key Ca2+-dependent repair mechanisms employed by epithelial cells to withstand candidalysin-producing hyphae. Using camelid nanobodies, we demonstrate candidalysin secretion directly into the invasion pockets induced by elongating C. albicans hyphae. The toxin induces oscillatory increases in cytosolic [Ca2+], which cause hydrolysis of PtdIns(4,5)P2 and loss of cortical actin. Epithelial cells dispose of damaged membrane regions containing candidalysin by an Alg-2/Alix/ESCRT-III-dependent blebbing process. At later stages, plasmalemmal tears induced mechanically by invading hyphae are repaired by exocytic insertion of lysosomal membranes. These two repair mechanisms maintain epithelial integrity and prevent mucosal damage during both commensal growth and infection by C. albicans.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jonathan Plumb
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anna Licht
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Mabel Yang
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), 07745 Jena, Germany; Institute of Microbiology, Friedrich Schiller University, 07745 Jena, Germany.
| | - Sergio Grinstein
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada.
| | - Michelle E Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| |
Collapse
|
11
|
Childs E, Henry CM, Canton J, Reis e Sousa C. Maintenance and loss of endocytic organelle integrity: mechanisms and implications for antigen cross-presentation. Open Biol 2021; 11:210194. [PMID: 34753318 PMCID: PMC8580422 DOI: 10.1098/rsob.210194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The membranes of endosomes, phagosomes and macropinosomes can become damaged by the physical properties of internalized cargo, by active pathogenic invasion or by cellular processes, including endocytic maturation. Loss of membrane integrity is often deleterious and is, therefore, prevented by mitigation and repair mechanisms. However, it can occasionally be beneficial and actively induced by cells. Here, we summarize the mechanisms by which cells, in particular phagocytes, try to prevent membrane damage and how, when this fails, they repair or destroy damaged endocytic organelles. We also detail how one type of phagocyte, the dendritic cell, can deliberately trigger localized damage to endocytic organelles to allow for major histocompatibility complex class I presentation of exogenous antigens and initiation of CD8+ T-cell responses to viruses and tumours. Our review highlights mechanisms for the regulation of endocytic organelle membrane integrity at the intersection of cell biology and immunology that could be co-opted for improving vaccination and intracellular drug delivery.
Collapse
Affiliation(s)
- Eleanor Childs
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Conor M. Henry
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Johnathan Canton
- Snyder Institute for Chronic Diseases, University of Calgary, Alberta, Canada,Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
12
|
Hu G, Horianopoulos L, Sánchez-León E, Caza M, Jung W, Kronstad JW. The monothiol glutaredoxin Grx4 influences thermotolerance, cell wall integrity, and Mpk1 signaling in Cryptococcus neoformans. G3 (BETHESDA, MD.) 2021; 11:jkab322. [PMID: 34542604 PMCID: PMC8527476 DOI: 10.1093/g3journal/jkab322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023]
Abstract
Monothiol glutaredoxins are important regulators of iron homeostasis that play conserved roles in the sensing and trafficking of iron-sulfur clusters. We previously characterized the role of the monothiol glutaredoxin Grx4 in iron homeostasis, the interaction with the iron regulator Cir1, and virulence in Cryptococcus neoformans. This important fungal pathogen causes cryptococcal meningoencephalitis in immunocompromised individuals worldwide. Here, we demonstrate that Grx4 is required for proliferation at elevated temperatures (both 37°C and 39°C) and under stress conditions. In particular, the grx4Δ mutant was hypersensitive to SDS, calcofluor white (CFW), and caffeine, suggesting that Grx4 is required for membrane and cell wall integrity (CWI). In this context, we found that Grx4 regulated the phosphorylation of the Mpk1 mitogen-activated protein kinase (MAPK) of the CWI pathway in cells grown at elevated temperature or upon treatment with CFW, caffeine, or SDS. The grx4Δ mutant also displayed increased sensitivity to FK506 and cyclosporin A, two inhibitors of the calcineurin pathway, indicating that Grx4 may influence growth at higher temperatures in parallel with calcineurin signaling. Upon thermal stress or calcium treatment, loss of Grx4 also caused partial mis-localization of Crz1, the transcription factor that is a calcineurin substrate. The phenotypes of the grx4Δ, crz1Δ, and cna1Δ (calcineurin) mutants suggest shared contributions to the regulation of temperature, cell wall, and other stresses. In summary, we show that Grx4 is also a key regulator of the responses to a variety of stress conditions in addition to its roles in iron homeostasis in C. neoformans.
Collapse
Affiliation(s)
- Guanggan Hu
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Linda Horianopoulos
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Eddy Sánchez-León
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Wonhee Jung
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
13
|
Reglero-Real N, Pérez-Gutiérrez L, Yoshimura A, Rolas L, Garrido-Mesa J, Barkaway A, Pickworth C, Saleeb RS, Gonzalez-Nuñez M, Austin-Williams SN, Cooper D, Vázquez-Martínez L, Fu T, De Rossi G, Golding M, Benoit-Voisin M, Boulanger CM, Kubota Y, Muller WA, Tooze SA, Nightingale TD, Collinson L, Perretti M, Aksoy E, Nourshargh S. Autophagy modulates endothelial junctions to restrain neutrophil diapedesis during inflammation. Immunity 2021; 54:1989-2004.e9. [PMID: 34363750 PMCID: PMC8459396 DOI: 10.1016/j.immuni.2021.07.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 02/06/2023]
Abstract
The migration of neutrophils from the blood circulation to sites of infection or injury is a key immune response and requires the breaching of endothelial cells (ECs) that line the inner aspect of blood vessels. Unregulated neutrophil transendothelial cell migration (TEM) is pathogenic, but the molecular basis of its physiological termination remains unknown. Here, we demonstrated that ECs of venules in inflamed tissues exhibited a robust autophagic response that was aligned temporally with the peak of neutrophil trafficking and was strictly localized to EC contacts. Genetic ablation of EC autophagy led to excessive neutrophil TEM and uncontrolled leukocyte migration in murine inflammatory models, while pharmacological induction of autophagy suppressed neutrophil infiltration into tissues. Mechanistically, autophagy regulated the remodeling of EC junctions and expression of key EC adhesion molecules, facilitating their intracellular trafficking and degradation. Collectively, we have identified autophagy as a modulator of EC leukocyte trafficking machinery aimed at terminating physiological inflammation. Inflamed venular ECs exhibit an autophagic response that localizes to EC contacts EC ATG5 deficiency promotes excessive and faster neutrophil TEM Ablation of EC autophagy increases cell surface expression of adhesion molecules Non-canonical autophagy operates in inflamed ECs and controls neutrophil migration
Collapse
Affiliation(s)
- Natalia Reglero-Real
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Lorena Pérez-Gutiérrez
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Azumi Yoshimura
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London NW1 1AT, UK
| | - Loïc Rolas
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - José Garrido-Mesa
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anna Barkaway
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Catherine Pickworth
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Rebeca S Saleeb
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Maria Gonzalez-Nuñez
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shani N Austin-Williams
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Dianne Cooper
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Laura Vázquez-Martínez
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Tao Fu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Giulia De Rossi
- Department of Cell Biology, Institute of Ophthalmology, University College London, London EC1V9EL, UK
| | - Matthew Golding
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Mathieu Benoit-Voisin
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo 113-0022, Japan
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sharon A Tooze
- Molecular Cell Biology of Autophagy Laboratory, Francis Crick Institute, London NW1 1AT, UK
| | - Thomas D Nightingale
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, Francis Crick Institute, London NW1 1AT, UK
| | - Mauro Perretti
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ezra Aksoy
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
14
|
d'Enfert C, Kaune AK, Alaban LR, Chakraborty S, Cole N, Delavy M, Kosmala D, Marsaux B, Fróis-Martins R, Morelli M, Rosati D, Valentine M, Xie Z, Emritloll Y, Warn PA, Bequet F, Bougnoux ME, Bornes S, Gresnigt MS, Hube B, Jacobsen ID, Legrand M, Leibundgut-Landmann S, Manichanh C, Munro CA, Netea MG, Queiroz K, Roget K, Thomas V, Thoral C, Van den Abbeele P, Walker AW, Brown AJP. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev 2021; 45:fuaa060. [PMID: 33232448 PMCID: PMC8100220 DOI: 10.1093/femsre/fuaa060] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022] Open
Abstract
Candida albicans is a major fungal pathogen of humans. It exists as a commensal in the oral cavity, gut or genital tract of most individuals, constrained by the local microbiota, epithelial barriers and immune defences. Their perturbation can lead to fungal outgrowth and the development of mucosal infections such as oropharyngeal or vulvovaginal candidiasis, and patients with compromised immunity are susceptible to life-threatening systemic infections. The importance of the interplay between fungus, host and microbiota in driving the transition from C. albicans commensalism to pathogenicity is widely appreciated. However, the complexity of these interactions, and the significant impact of fungal, host and microbiota variability upon disease severity and outcome, are less well understood. Therefore, we summarise the features of the fungus that promote infection, and how genetic variation between clinical isolates influences pathogenicity. We discuss antifungal immunity, how this differs between mucosae, and how individual variation influences a person's susceptibility to infection. Also, we describe factors that influence the composition of gut, oral and vaginal microbiotas, and how these affect fungal colonisation and antifungal immunity. We argue that a detailed understanding of these variables, which underlie fungal-host-microbiota interactions, will present opportunities for directed antifungal therapies that benefit vulnerable patients.
Collapse
Affiliation(s)
- Christophe d'Enfert
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Ann-Kristin Kaune
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Leovigildo-Rey Alaban
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Sayoni Chakraborty
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Nathaniel Cole
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Margot Delavy
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Daria Kosmala
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 25, rue du Docteur Roux, 75015 Paris, France
| | - Benoît Marsaux
- ProDigest BV, Technologiepark 94, B-9052 Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links, 9000 Ghent, Belgium
| | - Ricardo Fróis-Martins
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Moran Morelli
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Diletta Rosati
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Marisa Valentine
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Zixuan Xie
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Yoan Emritloll
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Peter A Warn
- Magic Bullet Consulting, Biddlecombe House, Ugbrook, Chudleigh Devon, TQ130AD, UK
| | - Frédéric Bequet
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Marie-Elisabeth Bougnoux
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Stephanie Bornes
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMRF0545, 20 Côte de Reyne, 15000 Aurillac, France
| | - Mark S Gresnigt
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Bernhard Hube
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Ilse D Jacobsen
- Microbial Immunology Research Group, Emmy Noether Junior Research Group Adaptive Pathogenicity Strategies, and the Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstraße 11a, 07745 Jena, Germany
| | - Mélanie Legrand
- Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, Institut Pasteur, USC 2019 INRA, 25, rue du Docteur Roux, 75015 Paris, France
| | - Salomé Leibundgut-Landmann
- Immunology Section, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 266a, Zurich 8057, Switzerland
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, Zürich 8057, Switzerland
| | - Chaysavanh Manichanh
- Gut Microbiome Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Carol A Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Karla Queiroz
- Mimetas, Biopartner Building 2, J.H. Oortweg 19, 2333 CH Leiden, The Netherlands
| | - Karine Roget
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | - Vincent Thomas
- BIOASTER Microbiology Technology Institute, 40 avenue Tony Garnier, 69007 Lyon, France
| | - Claudia Thoral
- NEXBIOME Therapeutics, 22 allée Alan Turing, 63000 Clermont-Ferrand, France
| | | | - Alan W Walker
- Gut Microbiology Group, Rowett Institute, University of Aberdeen, Ashgrove Road West, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
15
|
Zhang Y, Tang C, Zhang Z, Li S, Zhao Y, Weng L, Zhang H. Deletion of the ATP2 Gene in Candida albicans Blocks Its Escape From Macrophage Clearance. Front Cell Infect Microbiol 2021; 11:643121. [PMID: 33937095 PMCID: PMC8085345 DOI: 10.3389/fcimb.2021.643121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
Macrophages provide the first-line defense against invasive fungal infections and, therefore, escape from macrophage becomes the basis for the establishment of Candida albicans invasive infection. Here, we found that deletion of ATP2 (atp2Δ/Δ) in C. albicans resulted in a dramatic decrease from 69.2% (WT) to 1.2% in the escape rate in vitro. The effect of ATP2 on macrophage clearance stands out among the genes currently known to affect clearance. In the normal mice, the atp2Δ/Δ cells were undetectable in major organs 72 h after systemic infection, while WT cells persisted in vivo. However, in the macrophage-depleted mice, atp2Δ/Δ could persist for 72 h at an amount comparable to that at 24 h. Regarding the mechanism, WT cells sustained growth and switched to hyphal form, which was more conducive to escape from macrophages, in media that mimic the glucose-deficient environment in macrophages. In contrast, atp2Δ/Δ cells can remained viable but were unable to complete morphogenesis in these media, resulting in them being trapped within macrophages in the yeast form. Meanwhile, atp2Δ/Δ cells were killed by oxidative stress in alternative carbon sources by 2- to 3-fold more than WT cells. Taken together, ATP2 deletion prevents C. albicans from escaping macrophage clearance, and therefore ATP2 has a functional basis as a drug target that interferes with macrophage clearance.
Collapse
Affiliation(s)
- Yishan Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Chuanyan Tang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Zhanpeng Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Shuixiu Li
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Yajing Zhao
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Luobei Weng
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| | - Hong Zhang
- Department of Dermatology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Institute of Mycology, Jinan University, Guangzhou, China
| |
Collapse
|
16
|
Ammendolia DA, Bement WM, Brumell JH. Plasma membrane integrity: implications for health and disease. BMC Biol 2021; 19:71. [PMID: 33849525 PMCID: PMC8042475 DOI: 10.1186/s12915-021-00972-y] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane integrity is essential for cellular homeostasis. In vivo, cells experience plasma membrane damage from a multitude of stressors in the extra- and intra-cellular environment. To avoid lethal consequences, cells are equipped with repair pathways to restore membrane integrity. Here, we assess plasma membrane damage and repair from a whole-body perspective. We highlight the role of tissue-specific stressors in health and disease and examine membrane repair pathways across diverse cell types. Furthermore, we outline the impact of genetic and environmental factors on plasma membrane integrity and how these contribute to disease pathogenesis in different tissues.
Collapse
Affiliation(s)
- Dustin A Ammendolia
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - William M Bement
- Center for Quantitative Cell Imaging and Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John H Brumell
- Cell Biology Program, Hospital for Sick Children, 686 Bay Street PGCRL, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,SickKids IBD Centre, Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
17
|
Austermeier S, Kasper L, Westman J, Gresnigt MS. I want to break free – macrophage strategies to recognize and kill Candida albicans, and fungal counter-strategies to escape. Curr Opin Microbiol 2020; 58:15-23. [DOI: 10.1016/j.mib.2020.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022]
|
18
|
Westman J, Walpole GFW, Kasper L, Xue BY, Elshafee O, Hube B, Grinstein S. Lysosome Fusion Maintains Phagosome Integrity during Fungal Infection. Cell Host Microbe 2020; 28:798-812.e6. [PMID: 33022213 DOI: 10.1016/j.chom.2020.09.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/10/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Phagosomes must maintain membrane integrity to exert their microbicidal function. Some microorganisms, however, survive and grow within phagosomes. In such instances, phagosomes must expand to avoid rupture and microbial escape. We studied whether phagosomes regulate their size to preserve integrity during infection with the fungal pathogen Candida albicans. Phagosomes release calcium as C. albicans hyphae elongate, inducing lysosome recruitment and insertion, thereby increasing the phagosomal surface area. As hyphae grow, the expanding phagosome consumes the majority of free lysosomes. Simultaneously, lysosome biosynthesis is stimulated by activation of TFEB, a transcriptional regulator of lysosomal biogenesis. Preventing lysosomal insertion causes phagosomal rupture, NLRP3 inflammasome activation, IL-1β secretion and host-cell death. Whole-genome transcriptomic analysis demonstrate that stress responses elicited in C. albicans upon engulfment are reversed if phagosome expansion is prevented. Our findings reveal a mechanism whereby phagosomes maintain integrity while expanding, ensuring that growing pathogens remain entrapped within this microbicidal compartment.
Collapse
Affiliation(s)
- Johannes Westman
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Bessie Y Xue
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Osama Elshafee
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans Knoell Institute, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany
| | - Sergio Grinstein
- Program in Cell Biology, Peter Gilgan Centre for Research and Learning, the Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada.
| |
Collapse
|
19
|
Puerner C, Kukhaleishvili N, Thomson D, Schaub S, Noblin X, Seminara A, Bassilana M, Arkowitz RA. Mechanical force-induced morphology changes in a human fungal pathogen. BMC Biol 2020; 18:122. [PMID: 32912212 PMCID: PMC7488538 DOI: 10.1186/s12915-020-00833-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022] Open
Abstract
Background The initial step of a number of human or plant fungal infections requires active penetration of host tissue. For example, active penetration of intestinal epithelia by Candida albicans is critical for dissemination from the gut into the bloodstream. However, little is known about how this fungal pathogen copes with resistive forces upon host cell invasion. Results In the present study, we have used PDMS micro-fabrication to probe the ability of filamentous C. albicans cells to penetrate and grow invasively in substrates of different stiffness. We show that there is a threshold for penetration that corresponds to a stiffness of ~ 200 kPa and that invasive growth within a stiff substrate is characterized by dramatic filament buckling, along with a stiffness-dependent decrease in extension rate. We observed a striking alteration in cell morphology, i.e., reduced cell compartment length and increased diameter during invasive growth, that is not due to depolarization of active Cdc42, but rather occurs at a substantial distance from the site of growth as a result of mechanical compression. Conclusions Our data reveal that in response to this compression, active Cdc42 levels are increased at the apex, whereas active Rho1 becomes depolarized, similar to that observed in membrane protrusions. Our results show that cell growth and morphology are altered during invasive growth, suggesting stiffness dictates the host cells that C. albicans can penetrate.
Collapse
Affiliation(s)
- Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Nino Kukhaleishvili
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Darren Thomson
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Present Address: Manchester Fungal Infection Group, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Sebastien Schaub
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.,Present Address: Sorbonne University, CNRS, Developmental Biology Laboratory (LBDV), Villefranche-sur-mer, France
| | - Xavier Noblin
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France.
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
20
|
Wang ZL, Pan HB, Huang J, Yu XP. The zinc finger transcription factors Bbctf1α and Bbctf1β regulate the expression of genes involved in lipid degradation and contribute to stress tolerance and virulence in a fungal insect pathogen. PEST MANAGEMENT SCIENCE 2020; 76:2589-2600. [PMID: 32077581 DOI: 10.1002/ps.5797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 02/09/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND To initiate insect infection, entomopathogenic fungi produce diverse cuticle-degrading enzymes. Of those, lipolytic enzymes participate in epicuticular lipid hydrolysis and thus facilitate fungal penetration through the outermost cuticular barrier of the insect host. The Far/CTF1-type zinc finger transcription factors play an important role in the regulation of lipolytic activity and fungal pathogenicity in plant pathogens but remain functionally unknown in fungal insect pathogens. RESULTS Two Far/CTF1-type transcription factor Bbctf1α and Bbctf1β, which are essential for differential expression of genes involved in the fungal lipid degradation, were identified and functionally characterized in a fungal entomopathogen Beauveria bassiana. Disruption of each gene led to drastic losses of extracellular lipolytic activities under lipidic substrate-inducing conditions, followed by remarkable phenotypic defects associated with the fungal biocontrol potential. These defects mainly included severe impairments of mycelial growth and conidium formation, and drastic losses of tolerance to the stresses of oxidation and cell wall perturbation during colony growth under either normal or induction conditions. Bioassays showed that the virulence of each disruption mutant on the greater wax moth was remarkably attenuated in topical immersion. However, there was no significant difference in intrahemolymph injection when the cuticle penetration process was bypassed. CONCLUSIONS Bbctf1α and Bbctf1β are multifunctional transcription factors that play vital roles in the regulation of fungal lipid utilization and contribute to the vegetative growth, sporulation capacity, environmental fitness and pest control potential in B. bassiana. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zheng-Liang Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Hai-Bo Pan
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Jue Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou Zhejiang, P. R. China
| |
Collapse
|
21
|
Johnston NR, Strobel SA. Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 2020; 94:1051-1069. [PMID: 32152649 PMCID: PMC7230026 DOI: 10.1007/s00204-020-02687-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/21/2020] [Indexed: 02/04/2023]
Abstract
Fluoride is ubiquitously present throughout the world. It is released from minerals, magmatic gas, and industrial processing, and travels in the atmosphere and water. Exposure to low concentrations of fluoride increases overall oral health. Consequently, many countries add fluoride to their public water supply at 0.7-1.5 ppm. Exposure to high concentrations of fluoride, such as in a laboratory setting often exceeding 100 ppm, results in a wide array of toxicity phenotypes. This includes oxidative stress, organelle damage, and apoptosis in single cells, and skeletal and soft tissue damage in multicellular organisms. The mechanism of fluoride toxicity can be broadly attributed to four mechanisms: inhibition of proteins, organelle disruption, altered pH, and electrolyte imbalance. Recently, there has been renewed concern in the public sector as to whether fluoride is safe at the current exposure levels. In this review, we will focus on the impact of fluoride at the chemical, cellular, and multisystem level, as well as how organisms defend against fluoride. We also address public concerns about fluoride toxicity, including whether fluoride has a significant effect on neurodegeneration, diabetes, and the endocrine system.
Collapse
Affiliation(s)
- Nichole R Johnston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Strobel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
22
|
Abstract
Infectious diseases are a leading cause of mortality worldwide, with viruses and bacteria in particular having enormous impacts on global healthcare. One major challenge in combatting such diseases is a lack of effective drugs or specific treatments. In addition, drug resistance to currently available therapeutics and adverse effects caused by long-term overuse are both serious public health issues. A promising treatment strategy is to employ cell-membrane mimics as decoys to trap and to detain the pathogens. In this Perspective, we briefly review the infection mechanisms adopted by different pathogens at the cellular membrane interface and highlight the applications of cell-membrane-mimicking nanodecoys for systemic protection against infectious diseases. We also discuss the implication of nanodecoy-pathogen complexes in the development of vaccines. We anticipate this Perspective will provide new insights on design and development of advanced materials against emerging infectious diseases.
Collapse
Affiliation(s)
- Lang Rao
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Rui Tian
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, United States
| |
Collapse
|
23
|
Ketelut-Carneiro N, Souza COS, Benevides L, Gardinassi LG, Silva MC, Tavares LA, Zamboni DS, Silva JS. Caspase-11-dependent IL-1α release boosts Th17 immunity against Paracoccidioides brasiliensis. PLoS Pathog 2019; 15:e1007990. [PMID: 31425553 PMCID: PMC6715237 DOI: 10.1371/journal.ppat.1007990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 08/29/2019] [Accepted: 07/18/2019] [Indexed: 12/22/2022] Open
Abstract
The granulomatous lesion resulting from infection with the fungus Paracoccidioides brasiliensis is characterized by a compact aggregate of mature cells, surrounded by a fibroblast- and collagen-rich content. Granuloma formation requires signaling elicited by inflammatory molecules such as members of the interleukin-1 family. Two members of this family have been thoroughly studied, namely IL-1α and IL-1β. In this study, we addressed the mechanisms underlying IL-1α secretion and its functional role on the host resistance to fungal infection. We found that, the expression of caspase-11 triggered by P. brasiliensis infection of macrophages depends on IFN-β production, because its inhibition reduced procaspase-11 levels. Curiously, caspase-11 deficiency did not impair IL-1β production, however caspase-11 was required for a rapid pore-mediated cell lysis. The plasma membrane rupture facilitated the release of IL-1α, which was necessary to induce NO production and restrict fungal replication. Furthermore, P. brasiliensis-infected macrophages required IL-1α to produce optimal levels of IL-6, a major component of Th17 lymphocyte differentiation. Indeed, IL-1α deficiency accounted for a significant reduction of Th17 lymphocytes in lungs of infected mice, correlating with diminished neutrophil infiltration in the lungs. Strikingly, we identified that IL-1α directly reprograms the transcriptional profile of Th17-committed lymphocytes, increasing cellular proliferation, as for boosting IL-17 production by these cells. Beyond neutrophil chemotaxis in vivo, IL-17 also amplified IL-1α production by infected macrophages in vitro, endorsing a critical amplification loop of the inflammatory response. Therefore, our data suggest that the IFN-β/caspase-11/IL-1α pathway shapes a protective antifungal Th17 immunity, revealing a molecular mechanism underlying the cross-talk between innate and adaptive immunity.
Collapse
Affiliation(s)
- Natália Ketelut-Carneiro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Oliveira Silva Souza
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luciana Benevides
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Luiz Gustavo Gardinassi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Cláudia Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Alves Tavares
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dario Simões Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- Fiocruz-Bi-Institutional Translational Medicine Project, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
- * E-mail:
| |
Collapse
|
24
|
Abstract
Morphological changes are critical for the virulence of a range of plant and human fungal pathogens.
Candida albicans is a major human fungal pathogen whose ability to switch between different morphological states is associated with its adaptability and pathogenicity. In particular,
C. albicans can switch from an oval yeast form to a filamentous hyphal form, which is characteristic of filamentous fungi. What mechanisms underlie hyphal growth and how are they affected by environmental stimuli from the host or resident microbiota? These questions are the focus of intensive research, as understanding
C. albicans hyphal growth has broad implications for cell biological and medical research.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| |
Collapse
|