1
|
Desmarini D, Liu G, Jessen H, Bowring B, Connolly A, Crossett B, Djordjevic JT. Arg1 from Cryptococcus neoformans lacks PI3 kinase activity and conveys virulence roles via its IP 3-4 kinase activity. mBio 2024; 15:e0060824. [PMID: 38742909 PMCID: PMC11237472 DOI: 10.1128/mbio.00608-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Inositol tris/tetrakis phosphate kinases (IP3-4K) in the human fungal priority pathogens, Cryptococcus neoformans (CnArg1) and Candida albicans (CaIpk2), convey numerous virulence functions, yet it is not known whether the IP3-4K catalytic activity or a scaffolding role is responsible. We therefore generated a C. neoformans strain with a non-functional kinase, referred to as the dead-kinase (dk) CnArg1 strain (dkArg1). We verified that, although dkARG1 cDNA cloned from this strain produced a protein with the expected molecular weight, dkArg1 was catalytically inactive with no IP3-4K activity. Using recombinant CnArg1 and CaIpk2, we confirmed that, unlike the IP3-4K homologs in humans and Saccharomyces cerevisiae, CnArg1 and CaIpk2 do not phosphorylate the lipid-based substrate, phosphatidylinositol 4,5-bisphosphate, and therefore do not function as class I PI3Ks. Inositol polyphosphate profiling using capillary electrophoresis-electrospray ionization-mass spectrometry revealed that IP3 conversion is blocked in the dkArg1 and ARG1 deletion (Cnarg1Δ) strains and that 1-IP7 and a recently discovered isomer (4/6-IP7) are made by wild-type C. neoformans. Importantly, the dkArg1 and Cnarg1Δ strains had similar virulence defects, including suppressed growth at 37°C, melanization, capsule production, and phosphate starvation response, and were avirulent in an insect model, confirming that virulence is dependent on IP3-4K catalytic activity. Our data also implicate the dkArg1 scaffold in transcriptional regulation of arginine metabolism but via a different mechanism to S. cerevisiae since CnArg1 is dispensable for growth on different nitrogen sources. IP3-4K catalytic activity therefore plays a dominant role in fungal virulence, and IPK pathway function has diverged in fungal pathogens.IMPORTANCEThe World Health Organization has emphasized the urgent need for global action in tackling the high morbidity and mortality rates stemming from invasive fungal infections, which are exacerbated by the limited variety and compromised effectiveness of available drug classes. Fungal IP3-4K is a promising target for new therapy, as it is critical for promoting virulence of the human fungal priority pathogens, Cryptococcus neoformans and Candida albicans, and impacts numerous functions, including cell wall integrity. This contrasts to current therapies, which only target a single function. IP3-4K enzymes exert their effect through their inositol polyphosphate products or via the protein scaffold. Here, we confirm that the IP3-4K catalytic activity of CnArg1 promotes all virulence traits in C. neoformans that are attenuated by ARG1 deletion, reinforcing our ongoing efforts to find inositol polyphosphate effector proteins and to create inhibitors targeting the IP3-4K catalytic site, as a new antifungal drug class.
Collapse
Affiliation(s)
- Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Guizhen Liu
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Angela Connolly
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
2
|
Gogianu LI, Ruta LL, Farcasanu IC. Kcs1 and Vip1: The Key Enzymes behind Inositol Pyrophosphate Signaling in Saccharomyces cerevisiae. Biomolecules 2024; 14:152. [PMID: 38397389 PMCID: PMC10886477 DOI: 10.3390/biom14020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
The inositol pyrophosphate pathway, a complex cell signaling network, plays a pivotal role in orchestrating vital cellular processes in the budding yeast, where it regulates cell cycle progression, growth, endocytosis, exocytosis, apoptosis, telomere elongation, ribosome biogenesis, and stress responses. This pathway has gained significant attention in pharmacology and medicine due to its role in generating inositol pyrophosphates, which serve as crucial signaling molecules not only in yeast, but also in higher eukaryotes. As targets for therapeutic development, genetic modifications within this pathway hold promise for disease treatment strategies, offering practical applications in biotechnology. The model organism Saccharomyces cerevisiae, renowned for its genetic tractability, has been instrumental in various studies related to the inositol pyrophosphate pathway. This review is focused on the Kcs1 and Vip1, the two enzymes involved in the biosynthesis of inositol pyrophosphate in S. cerevisiae, highlighting their roles in various cell processes, and providing an up-to-date overview of their relationship with phosphate homeostasis. Moreover, the review underscores the potential applications of these findings in the realms of medicine and biotechnology, highlighting the profound implications of comprehending this intricate signaling network.
Collapse
Affiliation(s)
- Larisa Ioana Gogianu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- National Institute for Research and Development in Microtechnologies, Erou Iancu Nicolae Str. 126A, 077190 Voluntari, Romania
| | - Lavinia Liliana Ruta
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| | - Ileana Cornelia Farcasanu
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, Splaiul Independenței 91-95, 050095 Bucharest, Romania;
- Faculty of Chemistry, University of Bucharest, Panduri Road 90-92, 050663 Bucharest, Romania;
| |
Collapse
|
3
|
Du J, Dong Y, Zhu H, Deng Y, Sa C, Yu Q, Li M. DNA damage-induced autophagy is regulated by inositol polyphosphate synthetases in Candida albicans. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119622. [PMID: 37913846 DOI: 10.1016/j.bbamcr.2023.119622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
DNA damage-induced autophagy is a new type of autophagy that differs from traditional macroautophagy; however, this type of autophagy has not been identified in the pathogenic fungus Candida albicans. Inositol polyphosphates are involved in the regulation of DNA damage repair and macroautophagy; however, whether inositol polyphosphates are involved in the regulation of DNA damage-induced autophagy remains unclear. In this study, we identified DNA damage-induced autophagy in C. albicans and systematically investigated the mechanisms of inositol polyphosphate pathway regulation. We found that the core machinery of macro autophagy is also essential for DNA damage-induced autophagy, and that inositol polyphosphate synthetases Kcs1, Ipk1, and Vip1 play a critical role in autophagy. In this study, we focused on Kcs1 and Vip1, which are responsible for the synthesis of inositol pyrophosphate. The kcs1Δ/Δ and vip1Δ/Δ strains exhibited reduced number of phagophore assembly sites (PAS) and autophagic bodies. The recruitment of autophagy-related gene 1 (Atg1) to PAS was significantly affected in the kcs1Δ/Δ and vip1Δ/Δ strains. Target of rapamycin complex 1 kinase activity was elevated in kcs1Δ/Δ and vip1Δ/Δ strains, which significantly inhibited the initiation of autophagy. Atg18 Localization was altered in these mutants. The absence of Kcs1 or Vip1 caused the downregulation of RAD53, a key gene in the DNA damage response. These data provide further understanding of the mechanism of autophagy regulation in C. albicans.
Collapse
Affiliation(s)
- Jiawen Du
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yixuan Dong
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Ying Deng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Chula Sa
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
4
|
TNP Analogues Inhibit the Virulence Promoting IP3-4 Kinase Arg1 in the Fungal Pathogen Cryptococcus neoformans. Biomolecules 2022; 12:biom12101526. [PMID: 36291735 PMCID: PMC9599641 DOI: 10.3390/biom12101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022] Open
Abstract
New antifungals with unique modes of action are urgently needed to treat the increasing global burden of invasive fungal infections. The fungal inositol polyphosphate kinase (IPK) pathway, comprised of IPKs that convert IP3 to IP8, provides a promising new target due to its impact on multiple, critical cellular functions and, unlike in mammalian cells, its lack of redundancy. Nearly all IPKs in the fungal pathway are essential for virulence, with IP3-4 kinase (IP3-4K) the most critical. The dibenzylaminopurine compound, N2-(m-trifluorobenzylamino)-N6-(p-nitrobenzylamino)purine (TNP), is a commercially available inhibitor of mammalian IPKs. The ability of TNP to be adapted as an inhibitor of fungal IP3-4K has not been investigated. We purified IP3-4K from the human pathogens, Cryptococcus neoformans and Candida albicans, and optimised enzyme and surface plasmon resonance (SPR) assays to determine the half inhibitory concentration (IC50) and binding affinity (KD), respectively, of TNP and 38 analogues. A novel chemical route was developed to efficiently prepare TNP analogues. TNP and its analogues demonstrated inhibition of recombinant IP3-4K from C. neoformans (CnArg1) at low µM IC50s, but not IP3-4K from C. albicans (CaIpk2) and many analogues exhibited selectivity for CnArg1 over the human equivalent, HsIPMK. Our results provide a foundation for improving potency and selectivity of the TNP series for fungal IP3-4K.
Collapse
|
5
|
Nguyen Trung M, Furkert D, Fiedler D. Versatile signaling mechanisms of inositol pyrophosphates. Curr Opin Chem Biol 2022; 70:102177. [PMID: 35780751 DOI: 10.1016/j.cbpa.2022.102177] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 01/03/2023]
Abstract
Inositol pyrophosphates (PP-InsPs) constitute a group of highly charged messengers, which regulate central biological processes in health and disease, such as cellular phosphate and general energy homeostasis. Deciphering the molecular mechanisms underlying PP-InsP-mediated signaling remains a challenge due to the unique properties of these molecules, the different modes of action they can access, and a somewhat limited chemical and analytical toolset. Herein, we summarize the most recent mechanistic insights into PP-InsP signaling, which illustrate our progress in connecting mechanism and function of PP-InsPs.
Collapse
Affiliation(s)
- Minh Nguyen Trung
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - David Furkert
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Dorothea Fiedler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Straße 10, 13125 Berlin, Germany; Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
6
|
Plasma Membrane Phosphatidylinositol 4-Phosphate Is Necessary for Virulence of Candida albicans. mBio 2022; 13:e0036622. [PMID: 35467420 PMCID: PMC9239155 DOI: 10.1128/mbio.00366-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylinositol lipids regulate key processes, including vesicle trafficking and cell polarity. A recent study identified novel roles for phosphatidylinositol 4-phosphate (PI4P) in the plasma membrane of the fungal pathogen Candida albicans, including polarized hyphal growth and cell wall organization. Studies in other organisms were not able to separate the roles of PI4P in the plasma membrane and Golgi, but the C. albicans plasma membrane pool of PI4P could be selectively eliminated by deleting the STT4 kinase, which creates PI4P. Interestingly, stt4Δ mutants were strongly defective in disseminated candidiasis in mice but were not defective in an oral infection. This suggested that abnormal exposure of β-glucan in the mutant cell walls increased recruitment of innate immune cells during disseminated infection, which is not expected to impact oral infection. These results highlight novel roles of PI4P and reinforce the need to test the virulence of C. albicans mutants at different host sites.
Collapse
|