1
|
Sun XM, Yoshida A, Ishii T, Jiang YR, Gao YL, Ueno M, Hirasaka K, Osatomi K. Transcriptional regulation of the Japanese flounder Cu,Zn-SOD (Jfsod1) gene in RAW264.7 cells during oxidative stress caused by causative bacteria of edwardsiellosis. Biochimie 2024; 218:118-126. [PMID: 37666292 DOI: 10.1016/j.biochi.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/06/2023]
Abstract
Edwardsiellosis is one of the most important bacterial diseases in fish, sometimes causing extensive economic losses in the aquaculture industry. Our previous studies demonstrated that the Cu,Zn-SOD (sod1) activity has significantly increased in Japanese flounder, Paralichthys olivaceus, hepatopancreas infected by causative bacteria of edwardsiellosis Edwardsiella tarda NUF251. In this study, NUF251 stimulated intracellular superoxide radical production in mouse macrophage RAW264.7 cells, which was reduced by N-acetylcysteine. This result suggests that NUF251 infection causes oxidative stress. To evaluate the regulatory mechanism of Jfsod1 at transcriptional levels under oxidative stress induced by NUF251 infection, we cloned and determined the nucleotide sequence (1124 bp) of the 5'-flanking region of the Jfsod1 gene. The sequence analysis demonstrated that the binding sites for the transcription factors C/EBPα and NF-IL6 involved in the transcriptional regulation of the mammalian sod1 gene existed. We constructed a luciferase reporter system with the 5'-flanking region (-1124/-1) of the Jfsod1 gene, and a highly increased transcriptional activity of the region was observed in NUF251-infected RAW264.7 cells. Further studies using several mutants indicated that deletion of the recognition region of NF-IL6 (-272/-132) resulted in a significant decrease in the transcriptional activity of the Jfsod1 gene in NUF251-infected RAW264.7 cells. In particular, the binding site (-202/-194) for NF-IL6 might play a major role in upregulating the transcriptional activity of the 5'-flanking region of the Jfsod1 gene in response to oxidative stress induced by NUF251 infection. These results could be provided a new insight to understand the pathogenic mechanism of causative bacteria of edwardsiellosis.
Collapse
Affiliation(s)
- Xiao-Mi Sun
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Asami Yoshida
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan.
| | - Takuya Ishii
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Yan-Rong Jiang
- College of Food Science and Engineering, Bohai University, Jinzhou, 121013, China
| | - Yi-Li Gao
- College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Mikinori Ueno
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Katsuya Hirasaka
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Kiyoshi Osatomi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| |
Collapse
|
2
|
Use of Integrated Core Proteomics, Immuno-Informatics, and In Silico Approaches to Design a Multiepitope Vaccine against Zoonotic Pathogen Edwardsiella tarda. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Multidrug-resistant Edwardsiella tarda has been reported as the main causative agent for massive fish mortality. The pathogen is well-known for causing hemorrhagic septicemia in fish and has been linked to gastrointestinal infections in humans. Formalin-inactivated Edwardsiella vaccination has previously been found to be ineffective in aquaculture species. Therefore, based on E. tarda’s integrated core complete sequenced genomes, the study aimed to design a subunit vaccine based on T and B cell epitopes employing immunoinformatics approach. Initially, the top immunodominant and antigenic epitopes were predicted from the core complete sequenced genomes of the E. tarda genome and designed the vaccine by using linkers and adjuvant. In addition, vaccine 3D structure was predicted followed by refinement, and molecular docking was performed for the analysis of interacting residues between vaccines with TLR5, MHC-I, and MHC-II, respectively. The final vaccine constructs demonstrated strong hydrogen bond interactions. Molecular dynamic simulation of vaccine-TLR5 receptor complex showed a stable structural binding and compactness. Furthermore, E. coli used as a model organism for codon optimization proved optimal GC content and CAI value, which were subsequently cloned in vector pET2+ (a). Overall, the findings of the study imply that the designed epitope vaccine might be a good option for prophylaxis for E. tarda.
Collapse
|
3
|
Sahashi D, Kubo Y, Ishii M, Ikeda A, Yamasaki C, Komatsu M, Shiozaki K. Neu1 deficiency increases the susceptibility of zebrafish to Edwardsiella piscicida infection via lysosomal dysfunction. Gene 2022; 836:146667. [PMID: 35714800 DOI: 10.1016/j.gene.2022.146667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/14/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022]
Abstract
Neu1 is a lysosomal glycosidase that catalyzes the removal of sialic acids from glycoconjugates. Although Neu1 sialidase is highly conserved among vertebrates, the role of fish Neu1 is not fully understood because of its unique aquatic living situation. Compared to land animals, fish have a higher chance of bacterial infection, and to understand the role of fish Neu1, the susceptibility of Neu1 knockout zebrafish (Neu1-KO) was evaluated using Edwardsiella piscicida, a fish pathogen. Neu1-KO larvae showed high susceptibility to E. piscicida, despite the activation of macrophages, and presented increased lysosomal signals induced by the accumulation of Sia α2-3 linked oligosaccharides. The accumulation coincided with the signal of the macrophage marker, suggesting that the dysfunction of lysosomes in macrophages would result in a high susceptibility of Neu1-KO to E. piscicida. Chloroquine, an inhibitor of lysosomal degradation, induced high mortality of wild type zebrafish with E. piscicida infection accompanied by increased lysosomal accumulation, similar to Neu1-KO zebrafish. This study revealed that Neu1 sialidase plays a crucial role in the lysosomal degradation of macrophages with a bacterial infection.
Collapse
Affiliation(s)
- Daichi Sahashi
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Yurina Kubo
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Mika Ishii
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Asami Ikeda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Chiharu Yamasaki
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Department of Food Life Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
4
|
Tran NT, Vo LK, Komatsu M, Shiozaki K. Involvement of N-acetylneuraminate cytidylyltransferase in Edwardsiella piscicida pathogenicity. FISH & SHELLFISH IMMUNOLOGY 2022; 124:534-542. [PMID: 35477099 DOI: 10.1016/j.fsi.2022.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/22/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Edwardsiella piscicida is a gram-negative bacterium that causes Edwardsiellosis in cultured fish. Edwardsiellosis is accompanied by symptoms such as skin lesions, hemorrhage, and necrosis in fish organs, which leads to significant economic losses in the aquaculture industry. Recently, we found that bacterial sialoglycoconjugates may be involved in the infectivity of E. piscicida. The more infectious strains of E. piscicida contain more sialic acid in the bacterial body, and the mRNA level of putative CMP-Neu5Ac synthase (css) is upregulated compared to that in the non-pathogenic strain. However, this putative css gene is yet to be cloned, and the involvement of CSS in E. piscicida pathogenicity remains unclear. Here, we cloned and transferred the css gene from E. piscicida into the FPC498 strain. CSS promoted infection in cultured cells originating from different fish species, and enhanced the mortality of E. piscicida-infected zebrafish larvae. CSS enhanced cell attachment and motility in E. piscicida, which differs from the decreased bacterial growth observed with the sialic acid-supplemented M9 medium. Both fractions (chloroform-methanol)-soluble and -insoluble fraction) prepared from E. piscicida pellet exhibited the increment of sialo-conjugates induced by CSS. Further, lectin blotting revealed the increment of Sia α2-3- and α2-6-, but not α2-8-, -linked glycoprotein in CSS-overexpressing E. piscicida. Overall, these findings indicate the physiological significance of CSS and the role of sialylation in E. piscicida pathogenicity.
Collapse
Affiliation(s)
- Nhung Thi Tran
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
| | - Linh Khanh Vo
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Masaharu Komatsu
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazuhiro Shiozaki
- Faculty of Fisheries, Kagoshima University, Kagoshima, Japan; The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
5
|
Yokoyama N, Hanafusa K, Hotta T, Oshima E, Iwabuchi K, Nakayama H. Multiplicity of Glycosphingolipid-Enriched Microdomain-Driven Immune Signaling. Int J Mol Sci 2021; 22:9565. [PMID: 34502474 PMCID: PMC8430928 DOI: 10.3390/ijms22179565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Glycosphingolipids (GSLs), together with cholesterol, sphingomyelin (SM), and glycosylphosphatidylinositol (GPI)-anchored and membrane-associated signal transduction molecules, form GSL-enriched microdomains. These specialized microdomains interact in a cis manner with various immune receptors, affecting immune receptor-mediated signaling. This, in turn, results in the regulation of a broad range of immunological functions, including phagocytosis, cytokine production, antigen presentation and apoptosis. In addition, GSLs alone can regulate immunological functions by acting as ligands for immune receptors, and exogenous GSLs can alter the organization of microdomains and microdomain-associated signaling. Many pathogens, including viruses, bacteria and fungi, enter host cells by binding to GSL-enriched microdomains. Intracellular pathogens survive inside phagocytes by manipulating intracellular microdomain-driven signaling and/or sphingolipid metabolism pathways. This review describes the mechanisms by which GSL-enriched microdomains regulate immune signaling.
Collapse
Affiliation(s)
- Noriko Yokoyama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kei Hanafusa
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Tomomi Hotta
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Eriko Oshima
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
| | - Kazuhisa Iwabuchi
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| | - Hitoshi Nakayama
- Institute for Environmental and Gender-Specific Medicine, Juntendo University, Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan; (N.Y.); (K.H.); (T.H.); (E.O.); (K.I.)
- Laboratory of Biochemistry, Juntendo University Faculty of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
- Infection Control Nursing, Juntendo University Graduate School of Health Care and Nursing, Urayasu, Chiba 279-0023, Japan
| |
Collapse
|