1
|
Kuiper BP, Schöntag AMC, Oksanen HM, Daum B, Quax TEF. Archaeal virus entry and egress. MICROLIFE 2024; 5:uqad048. [PMID: 38234448 PMCID: PMC10791045 DOI: 10.1093/femsml/uqad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Archaeal viruses display a high degree of structural and genomic diversity. Few details are known about the mechanisms by which these viruses enter and exit their host cells. Research on archaeal viruses has lately made significant progress due to advances in genetic tools and imaging techniques, such as cryo-electron tomography (cryo-ET). In recent years, a steady output of newly identified archaeal viral receptors and egress mechanisms has offered the first insight into how archaeal viruses interact with the archaeal cell envelope. As more details about archaeal viral entry and egress are unravelled, patterns are starting to emerge. This helps to better understand the interactions between viruses and the archaeal cell envelope and how these compare to infection strategies of viruses in other domains of life. Here, we provide an overview of recent developments in the field of archaeal viral entry and egress, shedding light onto the most elusive part of the virosphere.
Collapse
Affiliation(s)
- Bastiaan P Kuiper
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Anna M C Schöntag
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| | - Hanna M Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
| | - Bertram Daum
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
| | - Tessa E F Quax
- Biology of Archaea and Viruses, Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty for Science and Engineering, University of Groningen, 7th floor, Nijenborgh 7, 9747 AG Groningen, the Netherlands
| |
Collapse
|
2
|
Banas I, Esser SP, Turzynski V, Soares A, Novikova P, May P, Moraru C, Hasenberg M, Rahlff J, Wilmes P, Klingl A, Probst AJ. Spatio-functional organization in virocells of small uncultivated archaea from the deep biosphere. THE ISME JOURNAL 2023; 17:1789-1792. [PMID: 37468677 PMCID: PMC10504349 DOI: 10.1038/s41396-023-01474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023]
Abstract
Despite important ecological roles posited for virocells (i.e., cells infected with viruses), studying individual cells in situ is technically challenging. We introduce here a novel correlative microscopic approach to study the ecophysiology of virocells. By conducting concerted virusFISH, 16S rRNA FISH, and scanning electron microscopy interrogations of uncultivated archaea, we linked morphologies of various altiarchaeal cells to corresponding phylogenetic signals and indigenous virus infections. While uninfected cells exhibited moderate separation between fluorescence signals of ribosomes and DNA, virocells displayed complete cellular segregation of chromosomal DNA from viral DNA, the latter co-localizing with host ribosome signals. A similar spatial separation was observed in dividing cells, with viral signals congregating near ribosomes at the septum. These observations suggest that replication of these uncultivated viruses occurs alongside host ribosomes, which are used to generate the required proteins for virion assembly. Heavily infected cells sometimes displayed virus-like particles attached to their surface, which agree with virus structures in cells observed via transmission electron microscopy. Consequently, this approach is the first to link genomes of uncultivated viruses to their respective structures and host cells. Our findings shed new light on the complex ecophysiology of archaeal virocells in deep subsurface biofilms and provide a solid framework for future in situ studies of virocells.
Collapse
Affiliation(s)
- Indra Banas
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Sarah P Esser
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Victoria Turzynski
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - André Soares
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | - Polina Novikova
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Cristina Moraru
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky-University Oldenburg, Oldenburg, Germany
| | | | - Janina Rahlff
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter LMU Munich, Planegg-Martinsried, Planegg, Germany.
| | - Alexander J Probst
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Group for Aquatic Microbial Ecology, Environmental Microbiology and Biotechnology, Faculty of Chemistry, University Duisburg-Essen, Essen, Germany.
- Centre of Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
- Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
3
|
Overton MS, Manuel RD, Lawrence CM, Snyder JC. Viruses of the Turriviridae: an emerging model system for studying archaeal virus-host interactions. Front Microbiol 2023; 14:1258997. [PMID: 37808280 PMCID: PMC10551542 DOI: 10.3389/fmicb.2023.1258997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Viruses have played a central role in the evolution and ecology of cellular life since it first arose. Investigations into viral molecular biology and ecological dynamics have propelled abundant progress in our understanding of living systems, including genetic inheritance, cellular signaling and trafficking, and organismal development. As well, the discovery of viral lineages that infect members of all three domains suggest that these lineages originated at the earliest stages of biological evolution. Research into these viruses is helping to elucidate the conditions under which life arose, and the dynamics that directed its early development. Archaeal viruses have only recently become a subject of intense study, but investigations have already produced intriguing and exciting results. STIV was originally discovered in Yellowstone National Park and has been the focus of concentrated research. Through this research, a viral genetic system was created, a novel lysis mechanism was discovered, and the interaction of the virus with cellular ESCRT machinery was revealed. This review will summarize the discoveries within this group of viruses and will also discuss future work.
Collapse
Affiliation(s)
- Michael S. Overton
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Robert D. Manuel
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| | - C. Martin Lawrence
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, United States
| | - Jamie C. Snyder
- Department of Biological Sciences, Cal Poly Pomona, Pomona, CA, United States
| |
Collapse
|
4
|
Doss RK, Palmer M, Mead DA, Hedlund BP. Functional biology and biotechnology of thermophilic viruses. Essays Biochem 2023; 67:671-684. [PMID: 37222046 PMCID: PMC10423840 DOI: 10.1042/ebc20220209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/28/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Viruses have developed sophisticated biochemical and genetic mechanisms to manipulate and exploit their hosts. Enzymes derived from viruses have been essential research tools since the first days of molecular biology. However, most viral enzymes that have been commercialized are derived from a small number of cultivated viruses, which is remarkable considering the extraordinary diversity and abundance of viruses revealed by metagenomic analysis. Given the explosion of new enzymatic reagents derived from thermophilic prokaryotes over the past 40 years, those obtained from thermophilic viruses should be equally potent tools. This review discusses the still-limited state of the art regarding the functional biology and biotechnology of thermophilic viruses with a focus on DNA polymerases, ligases, endolysins, and coat proteins. Functional analysis of DNA polymerases and primase-polymerases from phages infecting Thermus, Aquificaceae, and Nitratiruptor has revealed new clades of enzymes with strong proofreading and reverse transcriptase capabilities. Thermophilic RNA ligase 1 homologs have been characterized from Rhodothermus and Thermus phages, with both commercialized for circularization of single-stranded templates. Endolysins from phages infecting Thermus, Meiothermus, and Geobacillus have shown high stability and unusually broad lytic activity against Gram-negative and Gram-positive bacteria, making them targets for commercialization as antimicrobials. Coat proteins from thermophilic viruses infecting Sulfolobales and Thermus strains have been characterized, with diverse potential applications as molecular shuttles. To gauge the scale of untapped resources for these proteins, we also document over 20,000 genes encoded by uncultivated viral genomes from high-temperature environments that encode DNA polymerase, ligase, endolysin, or coat protein domains.
Collapse
Affiliation(s)
- Ryan K Doss
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
| | | | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, U.S.A
- Nevada Institute of Personalized Medicine, Las Vegas, Nevada, U.S.A
| |
Collapse
|
5
|
Feng X, Li Y, Tian C, Yang W, Liu X, Zhang C, Zeng Z. Isolation of archaeal viruses with lipid membrane from Tengchong acidic hot springs. Front Microbiol 2023; 14:1134935. [PMID: 37065132 PMCID: PMC10101205 DOI: 10.3389/fmicb.2023.1134935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Archaeal viruses are one of the most mysterious parts of the virosphere because of their diverse morphologies and unique genome contents. The crenarchaeal viruses are commonly found in high temperature and acidic hot springs, and the number of identified crenarchaeal viruses is being rapidly increased in recent two decades. Over fifty viruses infecting the members of the order Sulfolobales have been identified, most of which are from hot springs distributed in the United States, Russia, Iceland, Japan, and Italy. To further expand the reservoir of viruses infecting strains of Sulfolobaceae, we investigated virus diversity through cultivation-dependent approaches in hot springs in Tengchong, Yunnan, China. Eight different virus-like particles were detected in enrichment cultures, among which five new archaeal viruses were isolated and characterized. We showed that these viruses can infect acidophilic hyperthermophiles belonging to three different genera of the family Sulfolobaceae, namely, Saccharolobus, Sulfolobus, and Metallosphaera. We also compared the lipid compositions of the viral and cellular membranes and found that the lipid composition of some viral envelopes was very different from that of the host membrane. Collectively, our results showed that the Tengchong hot springs harbor highly diverse viruses, providing excellent models for archaeal virus-host studies.
Collapse
Affiliation(s)
- Xi Feng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yanan Li
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chang Tian
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei Yang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xinyu Liu
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Zhirui Zeng, ; Changyi Zhang,
| | - Zhirui Zeng
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- *Correspondence: Zhirui Zeng, ; Changyi Zhang,
| |
Collapse
|
6
|
Krijnse Locker J. Tips and tricks of viruses; unconventional egress. Mol Microbiol 2022; 117:1291-1292. [PMID: 35749309 DOI: 10.1111/mmi.14950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jacomine Krijnse Locker
- Electron Microscopy of Pathogens, Paul Ehrilich Institute, Langen, Germany.,Neglected Infectious Diseases with Focus on Imaging, Justus Liebig University, Giessen, Germany
| |
Collapse
|