1
|
Ghasemian E, Harding-Esch E, Mabey D, Holland MJ. When Bacteria and Viruses Collide: A Tale of Chlamydia trachomatis and Sexually Transmitted Viruses. Viruses 2023; 15:1954. [PMID: 37766360 PMCID: PMC10536055 DOI: 10.3390/v15091954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
The global incidence of sexually transmitted infections (STIs) remains high, with the World Health Organization (WHO) estimating that over 1 million people acquire STIs daily. STIs can lead to infertility, pregnancy complications, and cancers. Co-infections with multiple pathogens are prevalent among individuals with an STI and can lead to heightened infectivity and more severe clinical manifestations. Chlamydia trachomatis (CT) is the most reported bacterial STI worldwide in both men and women, and several studies have demonstrated co-infection of CT with viral and other bacterial STIs. CT is a gram-negative bacterium with a unique biphasic developmental cycle including infectious extracellular elementary bodies (EBs) and metabolically active intracellular reticulate bodies (RBs). The intracellular form of this organism, RBs, has evolved mechanisms to persist for long periods within host epithelial cells in a viable but non-cultivable state. The co-infections of CT with the most frequently reported sexually transmitted viruses: human immunodeficiency virus (HIV), human papillomavirus (HPV), and herpes simplex virus (HSV) have been investigated through in vitro and in vivo studies. These research studies have made significant strides in unraveling the intricate interactions between CT, these viral STIs, and their eukaryotic host. In this review, we present an overview of the epidemiology of these co-infections, while specifically delineating the underlying mechanisms by which CT influences the transmission and infection dynamics of HIV and HSV. Furthermore, we explore the intricate relationship between CT and HPV infection, with a particular emphasis on the heightened risk of cervical cancer. By consolidating the current body of knowledge, we provide valuable insights into the complex dynamics and implications of co-infection involving CT and sexually transmitted viruses.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London WC1E 7HT, UK; (E.H.-E.); (D.M.); (M.J.H.)
| | | | | | | |
Collapse
|
2
|
Steiert B, Icardi CM, Faris R, McCaslin PN, Smith P, Klingelhutz AJ, Yau PM, Weber MM. The Chlamydia trachomatis type III-secreted effector protein CteG induces centrosome amplification through interactions with centrin-2. Proc Natl Acad Sci U S A 2023; 120:e2303487120. [PMID: 37155906 PMCID: PMC10193975 DOI: 10.1073/pnas.2303487120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
The centrosome is the main microtubule organizing center of the cell and is crucial for mitotic spindle assembly, chromosome segregation, and cell division. Centrosome duplication is tightly controlled, yet several pathogens, most notably oncogenic viruses, perturb this process leading to increased centrosome numbers. Infection by the obligate intracellular bacterium Chlamydia trachomatis (C.t.) correlates with blocked cytokinesis, supernumerary centrosomes, and multipolar spindles; however, the mechanisms behind how C.t. induces these cellular abnormalities remain largely unknown. Here we show that the secreted effector protein, CteG, binds to centrin-2 (CETN2), a key structural component of centrosomes and regulator of centriole duplication. Our data indicate that both CteG and CETN2 are necessary for infection-induced centrosome amplification, in a manner that requires the C-terminus of CteG. Strikingly, CteG is important for in vivo infection and growth in primary cervical cells but is dispensable for growth in immortalized cells, highlighting the importance of this effector protein to chlamydial infection. These findings begin to provide mechanistic insight into how C.t. induces cellular abnormalities during infection, but also indicate that obligate intracellular bacteria may contribute to cellular transformation events. Centrosome amplification mediated by CteG-CETN2 interactions may explain why chlamydial infection leads to an increased risk of cervical or ovarian cancer.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Carolina M. Icardi
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Paige N. McCaslin
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Parker Smith
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| | - Peter M. Yau
- Carver Biotechnology Center–Protein Sciences Facility, University of Illinois at Urbana–Champaign, Urbana, IL61801
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA52242
| |
Collapse
|
3
|
Luís MP, Pereira IS, Bugalhão JN, Simões CN, Mota C, Romão MJ, Mota LJ. The Chlamydia trachomatis IncM Protein Interferes with Host Cell Cytokinesis, Centrosome Positioning, and Golgi Distribution and Contributes to the Stability of the Pathogen-Containing Vacuole. Infect Immun 2023; 91:e0040522. [PMID: 36877064 PMCID: PMC10112248 DOI: 10.1128/iai.00405-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/13/2023] [Indexed: 03/07/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterial pathogen that causes ocular and urogenital infections in humans. The ability of C. trachomatis to grow intracellularly in a pathogen-containing vacuole (known as an inclusion) depends on chlamydial effector proteins transported into the host cell by a type III secretion system. Among these effectors, several inclusion membrane proteins (Incs) insert in the vacuolar membrane. Here, we show that human cell lines infected by a C. trachomatis strain deficient for Inc CT288/CTL0540 (renamed IncM) displayed less multinucleation than when infected by IncM-producing strains (wild type or complemented). This indicated that IncM is involved in the ability of Chlamydia to inhibit host cell cytokinesis. The capacity of IncM to induce multinucleation in infected cells was shown to be conserved among its chlamydial homologues and appeared to require its two larger regions predicted to be exposed to the host cell cytosol. C. trachomatis-infected cells also displayed IncM-dependent defects in centrosome positioning, Golgi distribution around the inclusion, and morphology and stability of the inclusion. The altered morphology of inclusions containing IncM-deficient C. trachomatis was further affected by depolymerization of host cell microtubules. This was not observed after depolymerization of microfilaments, and inclusions containing wild-type C. trachomatis did not alter their morphology upon depolymerization of microtubules. Overall, these findings suggest that IncM may exert its effector function by acting directly or indirectly on host cell microtubules.
Collapse
Affiliation(s)
- Maria Pequito Luís
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Inês Serrano Pereira
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Joana N. Bugalhão
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Catarina N. Simões
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cristiano Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Maria João Romão
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Luís Jaime Mota
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
- Department of Life Sciences, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
4
|
Steiert B, Faris R, Weber MM. In Search of a Mechanistic Link between Chlamydia trachomatis-Induced Cellular Pathophysiology and Oncogenesis. Infect Immun 2023; 91:e0044322. [PMID: 36695575 PMCID: PMC9933725 DOI: 10.1128/iai.00443-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Centrosome duplication and cell cycle progression are essential cellular processes that must be tightly controlled to ensure cellular integrity. Despite their complex regulatory mechanisms, microbial pathogens have evolved sophisticated strategies to co-opt these processes to promote infection. While misregulation of these processes can greatly benefit the pathogen, the consequences to the host cell can be devastating. During infection, the obligate intracellular pathogen Chlamydia trachomatis induces gross cellular abnormalities, including supernumerary centrosomes, multipolar spindles, and defects in cytokinesis. While these observations were made over 15 years ago, identification of the bacterial factors responsible has been elusive due to the genetic intractability of Chlamydia. Recent advances in techniques of genetic manipulation now allows for the direct linking of bacterial virulence factors to manipulation of centrosome duplication and cell cycle progression. In this review, we discuss the impact, both immediate and downstream, of C. trachomatis infection on the host cell cycle regulatory apparatus and centrosome replication. We highlight links between C. trachomatis infection and cervical and ovarian cancers and speculate whether perturbations of the cell cycle and centrosome are sufficient to initiate cellular transformation. We also explore the biological mechanisms employed by Inc proteins and other secreted effector proteins implicated in the perturbation of these host cell pathways. Future work is needed to better understand the nuances of each effector's mechanism and their collective impact on Chlamydia's ability to induce host cellular abnormalities.
Collapse
Affiliation(s)
- Brianna Steiert
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Robert Faris
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Mary M. Weber
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
5
|
Pérez-González A, Cachay E, Ocampo A, Poveda E. Update on the Epidemiological Features and Clinical Implications of Human Papillomavirus Infection (HPV) and Human Immunodeficiency Virus (HIV) Coinfection. Microorganisms 2022; 10:1047. [PMID: 35630489 PMCID: PMC9147826 DOI: 10.3390/microorganisms10051047] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 12/01/2022] Open
Abstract
Human papillomavirus (HPV) infection is the most common sexually transmitted infection (STI) worldwide. Although most HPV infections will spontaneously resolve, a considerable proportion of them will persist, increasing the risk of anogenital dysplasia, especially within certain populations, such as patients infected with human immunodeficiency virus (HIV). Furthermore, high-risk oncogenic HPV types (HR-HPV) are the main cause of cervix and other anogenital cancers, such as cancer of the vagina, vulva, penis, or anus. HIV and HPV coinfection is common among people living with HIV (PLWH) but disproportionally affects men who have sex with men (MSM) for whom the rate of persistent HPV infection and reinfection is noteworthy. The molecular interactions between HIV and HPV, as well as the interplay between both viruses and the immune system, are increasingly being understood. The immune dysfunction induced by HIV infection impairs the rate of HPV clearance and increases its oncogenic risk. Despite the availability of effective antiretroviral therapy (ART), the incidence of several HPV-related cancers is higher in PLWH, and the burden of persistent HPV-related disease has become a significant concern in an aging HIV population. Several public health strategies have been developed to reduce the transmission of HIV and HPV and mitigate the consequences of this type of coinfection. Universal HPV vaccination is the most effective preventive tool to reduce the incidence of HPV disease. In addition, screening programs for HPV-related cervical and vulvovaginal diseases in women are well-recognized strategies to prevent cervical cancer. Similarly, anal dysplasia screening programs are being implemented worldwide for the prevention of anal cancer among PLWH. Herein, the main epidemiological features and clinical implications of HIV and HPV coinfection are reviewed, focusing mainly on the relationship between HIV immune status and HPV-related diseases and the current strategies used to reduce the burden of HPV-related disease.
Collapse
Affiliation(s)
- Alexandre Pérez-González
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain;
- Infectious Disease Unit, Internal Medicine Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain;
| | - Edward Cachay
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California at San Diego, San Diego, CA 92093, USA;
| | - Antonio Ocampo
- Infectious Disease Unit, Internal Medicine Department, Hospital Álvaro Cunqueiro, 36312 Vigo, Spain;
| | - Eva Poveda
- Group of Virology and Pathogenesis, Galicia Sur Health Research Institute (IIS Galicia Sur), 36312 Vigo, Spain;
| |
Collapse
|