1
|
Wu XQ, Su N, Fei Z, Fei F. Homer signaling pathways as effective therapeutic targets for ischemic and traumatic brain injuries and retinal lesions. Neural Regen Res 2021; 17:1454-1461. [PMID: 34916418 PMCID: PMC8771115 DOI: 10.4103/1673-5374.330588] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Ischemic and traumatic insults to the central nervous system account for most serious acute and fatal brain injuries and are usually characterized by primary and secondary damage. Secondary damage presents the greatest challenge for medical staff; however, there are currently few effective therapeutic targets for secondary damage. Homer proteins are postsynaptic scaffolding proteins that have been implicated in ischemic and traumatic insults to the central nervous system. Homer signaling can exert either positive or negative effects during such insults, depending on the specific subtype of Homer protein. Homer 1b/c couples with other proteins to form postsynaptic densities, which form the basis of synaptic transmission, while Homer1a expression can be induced by harmful external factors. Homer 1c is used as a unique biomarker to reveal alterations in synaptic connectivity before and during the early stages of apoptosis in retinal ganglion cells, mediated or affected by extracellular or intracellular signaling or cytoskeletal processes. This review summarizes the structural features, related signaling pathways, and diverse roles of Homer proteins in physiological and pathological processes. Upregulating Homer1a or downregulating Homer1b/c may play a neuroprotective role in secondary brain injuries. Homer also plays an important role in the formation of photoreceptor synapses. These findings confirm the neuroprotective effects of Homer, and support the future design of therapeutic drug targets or gene therapies for ischemic and traumatic brain injuries and retinal disorders based on Homer proteins.
Collapse
Affiliation(s)
- Xiu-Quan Wu
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Mazzone GL, Veeraraghavan P, Gonzalez-Inchauspe C, Nistri A, Uchitel OD. ASIC channel inhibition enhances excitotoxic neuronal death in an in vitro model of spinal cord injury. Neuroscience 2016; 343:398-410. [PMID: 28003157 DOI: 10.1016/j.neuroscience.2016.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/23/2016] [Accepted: 12/04/2016] [Indexed: 01/06/2023]
Abstract
In the spinal cord high extracellular glutamate evokes excitotoxic damage with neuronal loss and severe locomotor impairment. During the cell dysfunction process, extracellular pH becomes acid and may activate acid-sensing ion channels (ASICs) which could be important contributors to neurodegenerative pathologies. Our previous studies have shown that transient application of the glutamate analog kainate (KA) evokes delayed excitotoxic death of spinal neurons, while white matter is mainly spared. The present goal was to enquire if ASIC channels modulated KA damage in relation to locomotor network function and cell death. Mouse spinal cord slices were treated with KA (0.01 or 0.1mM) for 1h, and then washed out for 24h prior to analysis. RT-PCR results showed that KA (at 0.01mM concentration that is near-threshold for damage) increased mRNA expression of ASIC1a, ASIC1b, ASIC2 and ASIC3, an effect reversed by the ASIC inhibitor 4',6-diamidino-2-phenylindole (DAPI). A KA neurotoxic dose (0.1mM) reduced ASIC1a and ASIC2 expression. Cell viability assays demonstrated KA-induced large damage in spinal slices from mice with ASIC1a gene ablation. Likewise, immunohistochemistry indicated significant neuronal loss when KA was followed by the ASIC inhibitors DAPI or amiloride. Electrophysiological recording from ventral roots of isolated spinal cords showed that alternating oscillatory cycles were slowed down by 0.01mMKA, and intensely inhibited by subsequently applied DAPI or amiloride. Our data suggest that early rise in ASIC expression and function counteracted deleterious effects on spinal networks by raising the excitotoxicity threshold, a result with potential implications for improving neuroprotection.
Collapse
Affiliation(s)
- Graciela L Mazzone
- Laboratorios de Investigación aplicada en Neurociencias (LIAN) - Fundación para la Lucha conntra las Enfermedades Neurológicas de la Infancia (FLENI), CONICET, Buenos Aires, Argentina.
| | | | - Carlota Gonzalez-Inchauspe
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Andrea Nistri
- Neuroscience Department, International School for Advanced Studies (SISSA), Trieste, Italy; Spinal Person Injury Neurorehabilitation Applied Laboratory (SPINAL), Istituto di Medicina Fisica e Riabilitazione, Udine, Italy
| | - Osvaldo D Uchitel
- Instituto de Fisiología, Biología molecular y Neurociencias, CONICET, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
3
|
Radu BM, Banciu A, Banciu DD, Radu M. Acid-Sensing Ion Channels as Potential Pharmacological Targets in Peripheral and Central Nervous System Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 103:137-67. [PMID: 26920689 DOI: 10.1016/bs.apcsb.2015.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acid-sensing ion channels (ASICs) are widely expressed in the body and represent good sensors for detecting protons. The pH drop in the nervous system is equivalent to ischemia and acidosis, and ASICs are very good detectors in discriminating slight changes in acidity. ASICs are important pharmacological targets being involved in a variety of pathophysiological processes affecting both the peripheral nervous system (e.g., peripheral pain, diabetic neuropathy) and the central nervous system (e.g., stroke, epilepsy, migraine, anxiety, fear, depression, neurodegenerative diseases, etc.). This review discusses the role played by ASICs in different pathologies and the pharmacological agents acting on ASICs that might represent promising drugs. As the majority of above-mentioned pathologies involve not only neuronal dysfunctions but also microvascular alterations, in the next future, ASICs may be also considered as potential pharmacological targets at the vasculature level. Perspectives and limitations in the use of ASICs antagonists and modulators as pharmaceutical agents are also discussed.
Collapse
Affiliation(s)
- Beatrice Mihaela Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Adela Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Daniel Dumitru Banciu
- Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Mihai Radu
- Department of Neurological and Movement Sciences, Section of Anatomy and Histology, University of Verona, Verona, Italy; Department of Life and Environmental Physics, 'Horia Hulubei' National Institute for Physics and Nuclear Engineering, Magurele, Romania.
| |
Collapse
|
4
|
Wang Y, O’Bryant Z, Wang H, Huang Y. Regulating Factors in Acid-Sensing Ion Channel 1a Function. Neurochem Res 2015; 41:631-45. [DOI: 10.1007/s11064-015-1768-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/04/2015] [Accepted: 11/08/2015] [Indexed: 12/11/2022]
|
5
|
Su J, Zhou H, Tao Y, Guo J, Guo Z, Zhang S, Zhang Y, Huang Y, Tang Y, Dong Q, Hu R. G-CSF protects human brain vascular endothelial cells injury induced by high glucose, free fatty acids and hypoxia through MAPK and Akt signaling. PLoS One 2015; 10:e0120707. [PMID: 25849550 PMCID: PMC4388714 DOI: 10.1371/journal.pone.0120707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/26/2015] [Indexed: 12/30/2022] Open
Abstract
Granulocyte-colony stimulating factor (G-CSF) has been shown to play a neuroprotective role in ischemic stroke by mobilizing bone marrow (BM)-derived endothelial progenitor cells (EPCs), promoting angiogenesis, and inhibiting apoptosis. Impairments in mobilization and function of the BM-derived EPCs have previously been reported in animal and human studies of diabetes where there is both reduction in the levels of the BM-derived EPCs and its ability to promote angiogenesis. This is hypothesized to account for the pathogenesis of diabetic vascular complications such as stroke. Here, we sought to investigate the effects of G-CSF on diabetes-associated cerebral vascular defect. We observed that pretreatment of the cultured human brain vascular endothelial cells (HBVECs) with G-CSF largely prevented cell death induced by the combination stimulus with high glucose, free fatty acids (FFA) and hypoxia by increasing cell viability, decreasing apoptosis and caspase-3 activity. Cell ultrastructure measured by transmission electron microscope (TEM) revealed that G-CSF treatment nicely reduced combination stimulus-induced cell apoptosis. The results from fluorescent probe Fluo-3/AM showed that G-CSF greatly suppressed the levels of intracellular calcium ions under combination stimulus. We also found that G-CSF enhanced the expression of cell cycle proteins such as human cell division cycle protein 14A (hCdc14A), cyclinB and cyclinE, inhibited p53 activity, and facilitated cell cycle progression following combination stimulus. In addition, activation of extracellular signal-regulated kinase1/2 (ERK1/2) and Akt, and deactivation of c-Jun N terminal kinase (JNK) and p38 were proved to be required for the pro-survival effects of G-CSF on HBVECs exposed to combination stimulus. Overall, G-CSF is capable of alleviating HBVECs injury triggered by the combination administration with high glucose, FFA and hypoxia involving the mitogen-activated protein kinases (MAPK) and Akt signaling cascades. G-CSF may represent a promising therapeutic agent for diabetic stroke.
Collapse
Affiliation(s)
- Jingjing Su
- Department of Neurology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Houguang Zhou
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
- * E-mail: (HZ); (RH)
| | - Yinghong Tao
- Department of General Medicine, Ouyang Hospital, Hongkou District, Shanghai, China
| | - Jingchun Guo
- State Key Laboratory of Medical Neurobiology, Department of Neurobiology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032,China
| | - Zhuangli Guo
- Department of Emergency Neurology, the Affiliated Hospital of Medical College Qingdao University, Qingdao, 266100, China
| | - Shuo Zhang
- Department of Endocrine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yu Zhang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanyan Huang
- Department of Geriatric Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yuping Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Renming Hu
- Department of Endocrine, Huashan Hospital, Fudan University, Shanghai, 200040, China
- * E-mail: (HZ); (RH)
| |
Collapse
|
6
|
Cui Z, Zhou L, Liu C, Zhu G, Wu X, Yan Y, Xia X, Ben Z, Song Y, Zhou Y, Zhang H, Zhang D. The role of Homer1b/c in neuronal apoptosis following LPS-induced neuroinflammation. Neurochem Res 2014; 40:204-15. [PMID: 25503822 DOI: 10.1007/s11064-014-1460-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 02/07/2023]
Abstract
Homer, also designated Vesl, is one member of the newly found postsynaptic density scaffold proteins, playing a vital role in maintaining synaptic integrity, regulating intracellular calcium mobilization, and being critical for the regulation of cellular apoptosis. However, its function in the inflamed central nervous system (CNS) is not fully elucidated. Here, we investigated the role of Homer1b/c, a long form of Homer1, in lipopolysaccharide (LPS) induced neuroinflammation in CNS. Western blot analysis indicated that LPS administration significantly increased the expression of Homer1b/c in rat brain. Moreover, double immunofluorescent staining suggested Homer1b/c was mainly distributed in the cytoplasm of neurons and had a close association with cleaved caspase-3 level in neurons in rat brain after LPS injection. In vitro studies indicated that up-regulation of Homer1b/c might be related to the subsequent apoptosis in neurons treated by conditioned media (CM), collected from LPS-stimulated mixed glial cultures (MGC). We also found down-regulation of Homer1b/c partly blocked the increase of cleaved caspase-3 and the proportion of Bax/Bcl-2 in neurons induced by MGC-CM. Taken together, these findings suggested that Homer1b/c might promote neuronal apoptosis via the Bax/Bcl-2 dependent pathway during neuroinflammation in CNS, and inhibiting Homer1b/c expression might provide a novel neuroprotective strategy against the inflammation-related neuronal apoptosis.
Collapse
Affiliation(s)
- Zhiming Cui
- Department of Orthopaedics, The Second Affiliated Hospital of Nantong University, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|