1
|
Benny F, Oh JM, Kumar S, Abdelgawad MA, Ghoneim MM, Abdel-Bakky MS, Kukerti N, Jose J, Kim H, Mathew B. Isatin-based benzyloxybenzene derivatives as monoamine oxidase inhibitors with neuroprotective effect targeting neurogenerative disease treatment. RSC Adv 2023; 13:35240-35250. [PMID: 38053684 PMCID: PMC10694828 DOI: 10.1039/d3ra07035b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
Eighteen isatin-based benzyloxybenzaldehyde derivatives from three subseries, ISB, ISFB, and ISBB, were synthesized and their ability to inhibit monoamine oxidase (MAO) was evaluated. The inhibitory activity of all synthesized compounds was found to be more profound against MAO-B than MAO-A. Compound ISB1 most potently inhibited MAO-B with an IC50 of 0.124 ± 0.007 μM, ensued by ISFB1 (IC50 = 0.135 ± 0.002 μM). Compound ISFB1 most potently inhibited MAO-A with an IC50 of 0.678 ± 0.006 μM, ensued by ISBB3 (IC50 = 0.731 ± 0.028 μM), and had the highest selectivity index (SI) value (55.03). The three sub-parental compounds, ISB1, ISFB1, and ISBB1, had higher MAO-B inhibition than the other derivatives, indicating that the substitutions of the 5-H in the A-ring of isatin diminished the inhibition of MAO-A and MAO-B. Among these, ISB1 (para-benzyloxy group in the B-ring) displayed more significant MAO-B inhibition when compared to ISBB1 (meta-benzyloxy group in the B-ring). ISB1 and ISFB1 were identified to be competitive and reversible MAO-B inhibitors, having Ki values of 0.055 ± 0.010, and 0.069 ± 0.025 μM, respectively. Furthermore, in the parallel artificial membrane penetration assay, ISB1 and ISFB1 traversed the blood-brain barrier in the in vitro condition. Additionally, the current study found that ISB1 decreased rotenone-induced cell death in SH-SY5Y neuroblastoma cells. In docking and simulation studies, the hydrogen bonding formed by the imino nitrogen in ISB1 and the pi-pi stacking interaction of the phenyl ring in isatin significantly aided in the protein-ligand complex's stability, effectively inhibiting MAO-B. According to these observations, the MAO-B inhibitors ISB1 and ISFB1 were potent, selective, and reversible, making them conceivable therapies for neurological diseases.
Collapse
Affiliation(s)
- Feba Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| | - Jong Min Oh
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University Sakaka 72341 Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University Ad Diriyah 13713 Saudi Arabia
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University Buraydah 51452 Saudi Arabia
| | - Neelima Kukerti
- School of Pharmacy, Graphic Era Hill University Dehradun Uttarakhand 248002 India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Science, NITTE University Mangalore Karnataka 575018 India
| | - Hoon Kim
- Department of Pharmacy, Research Institute of Life Pharmaceutical Sciences, Sunchon National University Suncheon 57922 Republic of Korea
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham AIMS Health Sciences Campus Kochi 682041 India
| |
Collapse
|
2
|
Sudevan ST, Oh JM, Abdelgawad MA, Abourehab MAS, Rangarajan TM, Kumar S, Ahmad I, Patel H, Kim H, Mathew B. Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Sci Rep 2022; 12:22404. [PMID: 36575270 PMCID: PMC9794710 DOI: 10.1038/s41598-022-26929-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The inhibitory action of fifteen benzyloxy ortho/para-substituted chalcones (B1-B15) was evaluated against human monoamine oxidases (hMAOs). All the molecules inhibited hMAO-B isoform more potently than hMAO-A. Furthermore, the majority of the molecules showed strong inhibitory actions against hMAO-B at 10 μM level with residual activities of less than 50%. Compound B10 has an IC50 value of 0.067 μM, making it the most potent inhibitor of hMAO-B, trailed by compound B15 (IC50 = 0.12 μM). The thiophene substituent (B10) in the A-ring exhibited the strongest hMAO-B inhibition structurally, however, increased residue synthesis did not result in a rise in hMAO-B inhibition. In contrast, the benzyl group at the para position of the B-ring displayed more hMAO-B inhibition than the other positions. Compounds B10 and B15 had relatively high selectivity index (SI) values for hMAO-B (504.791 and 287.600, respectively). Ki values of B10 and B15 were 0.030 ± 0.001 and 0.033 ± 0.001 μM, respectively. The reversibility study showed that B10 and B15 were reversible inhibitors of hMAO-B. PAMPA assay manifested that the benzyloxy chalcones (B10 and B15) had a significant permeability and CNS bioavailability with Pe value higher than 4.0 × 10-6 cm/s. Both compounds were stabilized in protein-ligand complexes by the π-π stacking, which enabled them to bind to the hMAO-B enzyme's active site incredibly effectively. The hMAO-B was stabilized by B10- and B15-hMAO-B complexes, with binding energies of - 74.57 and - 87.72 kcal/mol, respectively. Using a genetic algorithm and multiple linear regression, the QSAR model was created. Based on the best 2D and 3D descriptor-based QSAR model, the following statistics were displayed: R2 = 0.9125, Q2loo = 0.8347. These findings imply that B10 and B15 are effective, selective, and reversible hMAO-B inhibitors.
Collapse
Affiliation(s)
- Sachithra Thazhathuveedu Sudevan
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Jong Min Oh
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Mohamed A. Abdelgawad
- grid.440748.b0000 0004 1756 6705Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 72341 Saudi Arabia ,grid.411662.60000 0004 0412 4932Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514 Egypt
| | - Mohammed A. S. Abourehab
- grid.412832.e0000 0000 9137 6644Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955 Saudi Arabia
| | - T. M. Rangarajan
- grid.8195.50000 0001 2109 4999Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, 110021 India
| | - Sunil Kumar
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| | - Iqrar Ahmad
- Department of Pharmaceutical Chemistry, Prof. Ravindra Nikam College of Pharmacy, Gondur, Dhule, 424002 Maharashtra India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405 Maharashtra India
| | - Hoon Kim
- grid.412871.90000 0000 8543 5345Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon, 57922 Republic of Korea
| | - Bijo Mathew
- grid.411370.00000 0000 9081 2061Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, 682 041 India
| |
Collapse
|
3
|
Sudevan ST, Rangarajan TM, Al-Sehemi AG, Nair AS, Koyiparambath VP, Mathew B. Revealing the role of the benzyloxy pharmacophore in the design of a new class of monoamine oxidase-B inhibitors. Arch Pharm (Weinheim) 2022; 355:e2200084. [PMID: 35567313 DOI: 10.1002/ardp.202200084] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022]
Abstract
The conceptual layout of monoamine oxidase (MAO) inhibitors has been modified to explore their potential biological application in the case of neurological disorders for the time being. The current review article is an effort to display the summation of innovative conceptual prospects of MAO inhibitors and their intriguing chemistry and bioactivity. Based on this scenario, we emphasize the pivotal role of the benzyloxy moiety attached to scaffolds like oxadiazolones, indolalkylamines, safinamide, caffeine, benzofurans, α-tetralones, β-nitrostyrene, benzoquinones, coumarins, indoles, chromones, and chromanone analogs, while acting as an MAO inhibitor.
Collapse
Affiliation(s)
- Sachithra T Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, KingKhalid University, 61413, Abha, Saudi Arabia
| | - Aathira S Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Vishal P Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
4
|
Spontaneous changes in brain striatal dopamine synthesis and storage dynamics ex vivo reveal end-product feedback-inhibition of tyrosine hydroxylase. Neuropharmacology 2022; 212:109058. [DOI: 10.1016/j.neuropharm.2022.109058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
5
|
Babić Leko M, Nikolac Perković M, Nedić Erjavec G, Klepac N, Švob Štrac DK, Borovečki F, Pivac N, Hof PR, Šimić G. Association of the MAOB rs1799836 Single Nucleotide Polymorphism and APOE ɛ4 Allele in Alzheimer's Disease. Curr Alzheimer Res 2021; 18:585-594. [PMID: 34533445 DOI: 10.2174/1567205018666210917162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/01/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dopaminergic system is functionally compromised in Alzheimer's dis-ease (AD). The activity of monoamine oxidase B (MAOB), the enzyme involved in the degradation of dopamine, is increased during AD. Also, increased expression of MAOB occurs in the post-mortem hippocampus and neocortex of patients with AD. The MAOB rs1799836 polymorphism modulates MAOB transcription, consequently influencing protein translation and MAOB activity. We recently showed that cerebrospinal fluid levels of amyloid β1-42 are decreased in patients carry- ing the A allele in MAOB rs1799836 polymorphism. OBJECTIVE The present study compares MAOB rs1799836 polymorphism and APOE, the only con- firmed genetic risk factor for sporadic AD. METHOD We included 253 participants, 127 of whom had AD, 57 had mild cognitive impairment, 11 were healthy controls, and 58 suffered from other primary causes of dementia. MAOB and APOE polymorphisms were determined using TaqMan SNP Genotyping Assays. RESULTS We observed that the frequency of APOE ɛ4/ɛ4 homozygotes and APOE ɛ4 carriers is sig- nificantly increased among patients carrying the AA MAOB rs1799836 genotype. CONCLUSION These results indicate that the MAOB rs1799836 polymorphism is a potential genetic biomarker of AD and a potential target for the treatment of decreased dopaminergic transmission and cognitive deterioration in AD.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | | | | | - Nataša Klepac
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Department of Molecular Medicine, Institute Ruđer Bošković, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, United States
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
6
|
García-Pardo J, Novio F, Nador F, Cavaliere I, Suárez-García S, Lope-Piedrafita S, Candiota AP, Romero-Gimenez J, Rodríguez-Galván B, Bové J, Vila M, Lorenzo J, Ruiz-Molina D. Bioinspired Theranostic Coordination Polymer Nanoparticles for Intranasal Dopamine Replacement in Parkinson's Disease. ACS NANO 2021; 15:8592-8609. [PMID: 33885286 PMCID: PMC8558863 DOI: 10.1021/acsnano.1c00453] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/12/2021] [Indexed: 05/07/2023]
Abstract
Dopamine (DA) is one of the main neurotransmitters found in the central nervous system and has a vital role in the function of dopaminergic (DArgic) neurons. A progressive loss of this specific subset of cells is one of the hallmarks of age-related neurodegenerative disorders such as Parkinson's disease (PD). Symptomatic therapy for PD has been centered in the precursor l-DOPA administration, an amino acid precursor of DA that crosses the blood-brain barrier (BBB) while DA does not, although this approach presents medium- to long-term side effects. To overcome this limitation, DA-nanoencapsulation therapies are actively being searched as an alternative for DA replacement. However, overcoming the low yield of encapsulation and/or poor biodistribution/bioavailability of DA is still a current challenge. Herein, we report the synthesis of a family of neuromelanin bioinspired polymeric nanoparticles. Our system is based on the encapsulation of DA within nanoparticles through its reversible coordination complexation to iron metal nodes polymerized with a bis-imidazol ligand. Our methodology, in addition to being simple and inexpensive, results in DA loading efficiencies of up to 60%. In vitro, DA nanoscale coordination polymers (DA-NCPs) exhibited lower toxicity, degradation kinetics, and enhanced uptake by BE(2)-M17 DArgic cells compared to free DA. Direct infusion of the particles in the ventricle of rats in vivo showed a rapid distribution within the brain of healthy rats, leading to an increase in striatal DA levels. More importantly, after 4 days of nasal administrations with DA-NCPs equivalent to 200 μg of the free drug per day, the number and duration of apomorphine-induced rotations was significantly lower from that in either vehicle or DA-treated rats performed for comparison purposes. Overall, this study demonstrates the advantages of using nanostructured DA for DA-replacement therapy.
Collapse
Affiliation(s)
- Javier García-Pardo
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Fernando Novio
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Departament
de Química, Universitat Autònoma
de Barcelona (UAB), Campus UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Fabiana Nador
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ivana Cavaliere
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Salvio Suárez-García
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Silvia Lope-Piedrafita
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
| | - Ana Paula Candiota
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Centro
de Investigacion Biomédica en Red en Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallés, Spain
| | - Jordi Romero-Gimenez
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
| | - Miquel Vila
- Servei de Ressonància Magnètica
Nuclear, Institut de Neurociències,
Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Cerdanyola
del Vallès, Spain
- Neurodegenerative
Diseases Research Group, Vall d’Hebron Research Institute (VHIR)-Center
for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Edifici Collserola Hospital Universitari Vall d’Hebron, Passeig de la Vall d’Hebron,
129, 08035 Barcelona, Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avancats, 08010 Barcelona, Spain
| | - Julia Lorenzo
- Institut
de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- Departament
de Bioquímica i Biologia Molecular, Unitat de Bioquímica
de Biociències, Edifici C, Universitat
Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Daniel Ruiz-Molina
- Catalan
Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
7
|
Guglielmi P, Carradori S, Ammazzalorso A, Secci D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin Drug Discov 2019; 14:995-1035. [PMID: 31268358 DOI: 10.1080/17460441.2019.1637415] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Selective monoamine oxidase-B (MAO-B) inhibitors are currently used as coadjuvants for the treatment of early motor symptoms in Parkinson's disease. They can, based on their chemical structure and mechanism of inhibition, be categorized into reversible and irreversible agents. Areas covered: This review provides a comprehensive update on the development state of selective MAO-B inhibitors describing the results, structures, structure-activity relationships (SARs) and Medicinal chemistry strategies as well as the related shortcomings over the past five years. Expert opinion: Researchers have explored and implemented new and old chemical scaffolds achieving high inhibitory potencies and isoform selectivity. Most of them were characterized and proposed as multitarget agents able to act at different levels (including AChE inhibition, H3R or A2AR antagonism, antioxidant and chelating properties, Aβ1-42 aggregation reduction) in the network of aetiologies of neurodegenerative disorders. These results can also be used to avoid 'cheese-reaction' effects and the occurrence of serotonergic syndrome in patients.
Collapse
Affiliation(s)
- Paolo Guglielmi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| | - Simone Carradori
- Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara , Chieti , Italy
| | | | - Daniela Secci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma , Rome , Italy
| |
Collapse
|
8
|
Ramsay RR, Majekova M, Medina M, Valoti M. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front Neurosci 2016; 10:375. [PMID: 27597816 PMCID: PMC4992697 DOI: 10.3389/fnins.2016.00375] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress toward strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Collapse
Affiliation(s)
- Rona R. Ramsay
- Biomedical Sciences Research Complex, University of St. AndrewsSt. Andrews, UK
| | - Magdalena Majekova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of SciencesBratislava, Slovakia
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de ZaragozaZaragoza, Spain
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di SienaSiena, Italy
| |
Collapse
|
9
|
Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:81-9. [PMID: 26891670 DOI: 10.1016/j.pnpbp.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom.
| |
Collapse
|
10
|
Huang L, Deng M, Fang Y, Li L. Dynamic changes of five neurotransmitters and their related enzymes in various rat tissues following β-asarone and levodopa co-administration. Exp Ther Med 2015; 10:1566-1572. [PMID: 26622527 DOI: 10.3892/etm.2015.2704] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 07/23/2015] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the dynamic changes of five neurotransmitters and their associated enzymes in the rat plasma and brain tissues following the co-administration of β-asarone and levodopa (L-dopa). The rats were divided into five groups, including the control group and four treatment groups that were intragastrically co-administered β-asarone and L-dopa and sacrificed at 1, 5, 18 and 48 h, respectively. Neurotransmitter levels in the brain tissues and plasma were detected using high performance liquid chromatograph and the related enzymes of dopamine (DA) were measured using an enzyme-linked immunosorbent assay. The results indicated that the striatal levels of L-dopa and 3,4-dihydroxyphenylacetic acid (DOPAC) peaked at 1 h and then returned to the normal levels, while the striatal levels of DA were stable within 48 h. In the cortex and hippocampus tissue, L-dopa, DA, DOPAC and homovanillic acid (HVA) levels peaked at 1 h and then returned to normal levels. In the plasma, L-dopa, DA, DOPAC and HVA levels peaked at 1 h. Compared with the control group, L-dopa, DA and HVA levels were higher between 18 and 48 h, whereas the DOPAC level was lower. By contrast, no statistically significant differences were observed in the serotonin (5-HT) levels among the plasma, hippocampus, cortex and striatum. Furthermore, the DA/L-dopa ratio in the brain tissues and plasma increased in the first 5 h, while (DOPAC + HVA)/DA ratios demonstrated a significant reduction. Striatal tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC) levels were higher compared with the control group; however, catechol-O-methyltransferase (COMT) and monoamine oxidase B levels were reduced. In the rat plasma, TH and COMT peaked at 1 h, while AADC peaked at 5 h. In conclusion, the results of the present study indicate that the co-administration of L-dopa and β-asarone may be used to maintain a stable striatal DA level within 48 h. In addition, this treatment may promote DA generation by AADC and reduce the metabolism of DA by COMT.
Collapse
Affiliation(s)
- Liping Huang
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China ; Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Minzhen Deng
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Yongqi Fang
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Ling Li
- Laboratory Center, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| |
Collapse
|
11
|
Misini B, Freinbichler W, Colivicchi MA, Bisilimi K, Linert W, Tipton KF, Della Corte L. Continuous monitoring of highly reactive oxygen radicals during in vivo microdialysis. J Neurosci Methods 2015; 251:1-6. [PMID: 25979353 DOI: 10.1016/j.jneumeth.2015.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/21/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Terephthalate (TA(2-)), which reacts with highly reactive oxygen species (hROS) to form the fluorophor 2-hydroxy terephthalic acid (OH-TA) with a high selectivity, has been used for determining hROS formation during in vivo microdialysis. Previously this involved collecting fractions of the microdialysate and determining the OH-TA formed after HPLC (the batch method). NEW METHOD This work reports the development and validation of a procedure for continuously determining hROS formation during microdialysis. TA(2-) was added to the artificial cerebrospinal fluid (aCSF) perfusing medium to trap hROS. OH-TA formation was detected in real time with a sensitive fluorescence detector equipped with a capillary flow cell that was coupled directly to the effluent stream of the microdialysis system. RESULTS The behaviour of the system was assessed by comparison with the batch method and using a well-characterized animal model of excitotoxic damage, based on the application of high concentrations (1mM and 500μM) of the non-NMDA glutamate receptor agonist kainate (KA) to the neostriatum. Data for the evoked release of taurine were also determined in these samples. No temporal difference between hROS and taurine release could be detected. COMPARISON WITH EXISTING METHOD(S) The flow method had a comparable sensitivity of hROS detection to the batch method. It was simpler, cheaper and less time-consuming than the batch method. CONCLUSIONS This direct system is convenient and technically undemanding. It should be useful for the rapid assessment of the hROS responses to neurotoxins and other compounds in microdialysis experiments in vivo.
Collapse
Affiliation(s)
- Bashkim Misini
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Vienna, Austria
| | - Wolfhardt Freinbichler
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Vienna, Austria
| | - Maria Alessandra Colivicchi
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy
| | | | - Wolfgang Linert
- Institute for Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163-AC, A-1060 Vienna, Austria
| | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
| | - Laura Della Corte
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Università degli Studi di Firenze, Viale G. Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|