1
|
Yasamineh S, Mehrabani FJ, Derafsh E, Danihiel Cosimi R, Forood AMK, Soltani S, Hadi M, Gholizadeh O. Potential Use of the Cholesterol Transfer Inhibitor U18666A as a Potent Research Tool for the Study of Cholesterol Mechanisms in Neurodegenerative Disorders. Mol Neurobiol 2024; 61:3503-3527. [PMID: 37995080 DOI: 10.1007/s12035-023-03798-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Cholesterol is an essential component of mammalian cell membranes and a precursor for crucial signaling molecules. The brain contains the highest level of cholesterol in the body, and abnormal cholesterol metabolism links to many neurodegenerative disorders. The results indicate that faulty cholesterol metabolism is a common feature among people living with neurodegenerative conditions. The researchers suggest that restoring cholesterol levels may become a beneficial new strategy in treating certain neurodegenerative conditions. Several neurodegenerative disorders, such as Alzheimer's disease (AD), Niemann-Pick type C (NPC) disease, and Parkinson's disease (PD), have been connected to abnormalities in brain cholesterol metabolism. Consequently, using a lipid research tool is vital to study further and understand the effect of lipids in neurodegenerative disorders such as NPC, AD, PD, and Huntington's disease (HD). U18666A, also known as 3-(2-(diethylamino) ethoxy) androst-5-en-17-one, is a pharmaceutical drug that suppresses cholesterol trafficking and is a well-known class-2 amphiphile. U18666A has performed many functions, allowing for essential discoveries in lipid studies and shedding light on the pathophysiology of neurodegenerative disorders. Additionally, U18666A prevented the downregulation of low-density lipoprotein (LDL) receptors that are induced by LDL and led to the buildup of cholesterol in lysosomes. Numerous studies show that U18666A impacts the function of cholesterol trafficking to control the metabolism and transport of amyloid precursor proteins (APPs). Treating cortical neurons with U18666A may provide a new in vitro model system for studying the underlying molecular process of NPC, AD, HD, and PD. In this article, we review the mechanism and function of U18666A as a vital tool for studying cholesterol mechanisms in neurological diseases related to abnormal cholesterol metabolism, such as AD, NPC, HD, and PD.
Collapse
Affiliation(s)
| | | | - Ehsan Derafsh
- Windsor University School of Medicine, Cayon, Saint Kitts and Nevis
| | | | | | - Siamak Soltani
- Department of Forensic Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meead Hadi
- Department Of Microbiology, Faculty of Basic Sciences, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
2
|
Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6:e386. [PMID: 36321333 PMCID: PMC9836261 DOI: 10.1002/edm2.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Saturated fatty acids (FAs) are the main component of high-fat diets (HFDs), and high consumption has been associated with the development of insulin resistance, endoplasmic reticulum stress and mitochondrial dysfunction in neuronal cells. In particular, the reduction in neuronal insulin signaling seems to underlie the development of cognitive impairments and has been considered a risk factor for Alzheimer's disease (AD). METHODS This review summarized and critically analyzed the research that has impacted the field of saturated FA metabolism in neurons. RESULTS We reviewed the mechanisms for free FA transport from the systemic circulation to the brain and how they impact neuronal metabolism. Finally, we focused on the molecular and the physiopathological consequences of brain exposure to the most abundant FA in the HFD, palmitic acid (PA). CONCLUSION Understanding the mechanisms that lead to metabolic alterations in neurons induced by saturated FAs could help to develop several strategies for the prevention and treatment of cognitive impairment associated with insulin resistance, metabolic syndrome, or type II diabetes.
Collapse
Affiliation(s)
- Karina Sánchez-Alegría
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
3
|
Tecalco-Cruz AC, Pedraza-Chaverri J, Briones-Herrera A, Cruz-Ramos E, López-Canovas L, Zepeda-Cervantes J. Protein degradation-associated mechanisms that are affected in Alzheimer´s disease. Mol Cell Biochem 2022; 477:915-925. [PMID: 35083609 DOI: 10.1007/s11010-021-04334-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia associated with age-related neurodegeneration. Alteration of several molecular mechanisms has been correlated with the progression of AD. In recent years, dysregulation of proteostasis-associated pathways has emerged as a potential risk factor for neurodegenerative diseases. This review investigated the ubiquitin-proteasome system, lysosome-associated degradation, endoplasmic-reticulum-associated degradation, and the formation of advanced glycation end products. These pathways involved in proteostasis have been reported to be altered in AD, suggesting that their study may be critical for identifying new biomarkers and target molecules for AD.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| | - Alfredo Briones-Herrera
- Departamento de Biología. Facultad de Química, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| | - Eduardo Cruz-Ramos
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo. Postal 03100, Ciudad de México, Mexico
| | - Jesús Zepeda-Cervantes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Apdo. Postal 04510, Ciudad de México, Mexico
| |
Collapse
|
4
|
Biocatalyzed Synthesis of Statins: A Sustainable Strategy for the Preparation of Valuable Drugs. Catalysts 2019. [DOI: 10.3390/catal9030260] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are the largest selling class of drugs prescribed for the pharmacological treatment of hypercholesterolemia and dyslipidaemia. Statins also possess other therapeutic effects, called pleiotropic, because the blockade of the conversion of HMG-CoA to (R)-mevalonate produces a concomitant inhibition of the biosynthesis of numerous isoprenoid metabolites (e.g., geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP)). Thus, the prenylation of several cell signalling proteins (small GTPase family members: Ras, Rac, and Rho) is hampered, so that these molecular switches, controlling multiple pathways and cell functions (maintenance of cell shape, motility, factor secretion, differentiation, and proliferation) are regulated, leading to beneficial effects in cardiovascular health, regulation of the immune system, anti-inflammatory and immunosuppressive properties, prevention and treatment of sepsis, treatment of autoimmune diseases, osteoporosis, kidney and neurological disorders, or even in cancer therapy. Thus, there is a growing interest in developing more sustainable protocols for preparation of statins, and the introduction of biocatalyzed steps into the synthetic pathways is highly advantageous—synthetic routes are conducted under mild reaction conditions, at ambient temperature, and can use water as a reaction medium in many cases. Furthermore, their high selectivity avoids the need for functional group activation and protection/deprotection steps usually required in traditional organic synthesis. Therefore, biocatalysis provides shorter processes, produces less waste, and reduces manufacturing costs and environmental impact. In this review, we will comment on the pleiotropic effects of statins and will illustrate some biotransformations nowadays implemented for statin synthesis.
Collapse
|
5
|
Fernández-Pérez EJ, Sepúlveda FJ, Peters C, Bascuñán D, Riffo-Lepe NO, González-Sanmiguel J, Sánchez SA, Peoples RW, Vicente B, Aguayo LG. Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword. Front Aging Neurosci 2018; 10:226. [PMID: 30123122 PMCID: PMC6085471 DOI: 10.3389/fnagi.2018.00226] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
Background: The beta-amyloid peptide (Aβ) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aβ in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-β-cyclodextrin (MβCD) and MβCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of Aβ to neuronal membranes (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aβ with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MβCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aβ (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aβ in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aβ peptide in the neuronal membrane.
Collapse
Affiliation(s)
- Eduardo J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Fernando J Sepúlveda
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Nicolás O Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | | | - Susana A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Universidad de Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
6
|
Zhao L, Xiao Y, Xiu J, Tan LC, Guan ZZ. Protection against the Neurotoxic Effects of β-Amyloid Peptide on Cultured Neuronal Cells by Lovastatin Involves Elevated Expression of α7 Nicotinic Acetylcholine Receptors and Activating Phosphorylation of Protein Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1081-1093. [DOI: 10.1016/j.ajpath.2017.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/27/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
|
7
|
Eskandary A, Moazedi AA, Najaph zade varzi H, Akhond MR. Combined Effects of Donepezil and Lovastatin on Cognition Deficit Induced by Bilateral Lesion of the Nucl. Basalis Magnocellularis in a Rat Model of Alzheimer’s Disease. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9723-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Zhang X, Lv C, An Y, Liu Q, Rong H, Tao L, Wang Y, Wang Y, Xiao R. Increased Levels of 27-Hydroxycholesterol Induced by Dietary Cholesterol in Brain Contribute to Learning and Memory Impairment in Rats. Mol Nutr Food Res 2018; 62. [PMID: 29193679 DOI: 10.1002/mnfr.201700531] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 11/08/2017] [Indexed: 12/22/2022]
Abstract
SCOPE Dietary cholesterol has been shown to play a role in the development of Alzheimer's disease (AD). It is proposed that oxysterol especially 27-hydroxycholesterol (27-OHC) may play a potential role in β-amyloid peptides (Aβ) production and accumulation during AD progression. METHODS AND RESULTS To investigate the mechanisms of dietary cholesterol and 27-OHC on learning and memory impairment, male Sprague-Dawley rats are fed with cholesterol diet with or without 27-OHC synthetase inhibitor (anastrozole) injection. The levels of cholesterol, 27-OHC, 24-hydroxycholesterol (24S-OHC), 7α-hydroxycholesterol, and 7β-hydroxycholesterol in plasma are determined; apolipoprotein A (ApoA), apolipoprotein B (ApoB), HDL-cholesterol (HDL-C), and LDL-cholesterol (LDL-C) in plasma or brain; CYP27A1 and CYP7A1 in liver and CYP46A1 and CYP7B1 in brain; cathepsin B, cathepsin D, and acid phosphatase in lysosome; and Aβ1-40 and Aβ1-42 in brain. Results show increased levels of 27-OHC (p < 0.01), LDL-C (p < 0.01), and ApoB (p < 0.01), and decreased level of HDL-C (p < 0.05) in plasma, upregulated CYP27A1 (p < 0.01) and CYP7A1 (p < 0.01) expression in liver, altered lysosomal function, and increased level of Aβ in brain (p < 0.05). CONCLUSIONS This study indicates that the mechanisms of dietary cholesterol on learning and memory impairment may be involved in cholesterol metabolism and lysosome function with the increase of plasma 27-OHC, thus resulting in Aβ formation and accumulation.
Collapse
Affiliation(s)
- Xiaona Zhang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Chenyan Lv
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yu An
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Quanri Liu
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Hongguo Rong
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Lingwei Tao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ying Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Yushan Wang
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Rong Xiao
- School of Public Health, Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| |
Collapse
|
9
|
Fernández-Pérez EJ, Sepúlveda FJ, Peters C, Bascuñán D, Riffo-Lepe NO, González-Sanmiguel J, Sánchez SA, Peoples RW, Vicente B, Aguayo LG. Effect of Cholesterol on Membrane Fluidity and Association of Aβ Oligomers and Subsequent Neuronal Damage: A Double-Edged Sword. Front Aging Neurosci 2018. [PMID: 30123122 DOI: 10.3389/fnagi.2018.002.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Background: The beta-amyloid peptide (Aβ) involved in Alzheimer's disease (AD) has been described to associate/aggregate on the cell surface disrupting the membrane through pore formation and breakage. However, molecular determinants involved for this interaction (e.g., some physicochemical properties of the cell membrane) are largely unknown. Since cholesterol is an important molecule for membrane structure and fluidity, we examined the effect of varying cholesterol content with the association and membrane perforation by Aβ in cultured hippocampal neurons. Methods: To decrease or increase the levels of cholesterol in the membrane we used methyl-β-cyclodextrin (MβCD) and MβCD/cholesterol, respectively. We analyzed if membrane fluidity was affected using generalized polarization (GP) imaging and the fluorescent dye di-4-ANEPPDHQ. Additionally membrane association and perforation was assessed using immunocytochemistry and electrophysiological techniques, respectively. Results: The results showed that cholesterol removal decreased the macroscopic association of Aβ to neuronal membranes (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.05) and induced a facilitation of the membrane perforation by Aβ with respect to control cells (half-time for maximal charge transferred: control = 7.2 vs. MβCD = 4.4). Under this condition, we found an increase in membrane fluidity (46 ± 3.3% decrease in GP value, p < 0.001). On the contrary, increasing cholesterol levels incremented membrane rigidity (38 ± 2.7% increase in GP value, p < 0.001) and enhanced the association and clustering of Aβ (fluorescent-puncta/20 μm: control = 18 ± 2 vs. MβCD = 10 ± 1, p < 0.01), but inhibited membrane disruption. Conclusion: Our results strongly support the significance of plasma membrane organization in the toxic effects of Aβ in hippocampal neurons, since fluidity can regulate distribution and insertion of the Aβ peptide in the neuronal membrane.
Collapse
Affiliation(s)
- Eduardo J Fernández-Pérez
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Fernando J Sepúlveda
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Christian Peters
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Denisse Bascuñán
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | - Nicolás O Riffo-Lepe
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| | | | - Susana A Sánchez
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Robert W Peoples
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| | - Benjamín Vicente
- Department of Psychiatry and Mental Health, Universidad de Concepción, Concepción, Chile
| | - Luis G Aguayo
- Laboratory of Neurophysiology, Department of Physiology, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
10
|
Soto-Acosta R, Bautista-Carbajal P, Cervantes-Salazar M, Angel-Ambrocio AH, del Angel RM. DENV up-regulates the HMG-CoA reductase activity through the impairment of AMPK phosphorylation: A potential antiviral target. PLoS Pathog 2017; 13:e1006257. [PMID: 28384260 PMCID: PMC5383345 DOI: 10.1371/journal.ppat.1006257] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/24/2017] [Indexed: 01/01/2023] Open
Abstract
Dengue is the most common mosquito-borne viral disease in humans. Changes of lipid-related metabolites in endoplasmic reticulum of dengue virus (DENV) infected cells have been associated with replicative complexes formation. Previously, we reported that DENV infection inhibits HMGCR phosphorylation generating a cholesterol-enriched cellular environment in order to favor viral replication. In this work, using enzymatic assays, ELISA, and WB we found a significant higher activity of HMGCR in DENV infected cells, associated with the inactivation of AMPK. AMPK activation by metformin declined the HMGCR activity suggesting that AMPK inactivation mediates the enhanced activity of HMGCR. A reduction on AMPK phosphorylation activity was observed in DENV infected cells at 12 and 24 hpi. HMGCR and cholesterol co-localized with viral proteins NS3, NS4A and E, suggesting a role for HMGCR and AMPK activity in the formation of DENV replicative complexes. Furthermore, metformin and lovastatin (HMGCR inhibitor) altered this co-localization as well as replicative complexes formation supporting that active HMGCR is required for replicative complexes formation. In agreement, metformin prompted a significant dose-dependent antiviral effect in DENV infected cells, while compound C (AMPK inhibitor) augmented the viral genome copies and the percentage of infected cells. The PP2A activity, the main modulating phosphatase of HMGCR, was not affected by DENV infection. These data demonstrate that the elevated activity of HMGCR observed in DENV infected cells is mediated through AMPK inhibition and not by increase in PP2A activity. Interestingly, the inhibition of this phosphatase showed an antiviral effect in an HMGCR-independent manner. These results suggest that DENV infection increases HMGCR activity through AMPK inactivation leading to higher cholesterol levels in endoplasmic reticulum necessary for replicative complexes formation. This work provides new information about the mechanisms involved in host lipid metabolism during DENV replicative cycle and identifies new potential antiviral targets for DENV replication. DENV replicative complexes formation is associated with changes of lipid-related metabolites in endoplasmic reticulum, such as an increase in cholesterol synthesis. This increase correlates with a significant augment in the activity of HMGCoA reductase (the limiting enzyme in cholesterol synthesis), favoring a cholesterol-enriched cellular environment. The augment in the activity of the HMGCR observed in infected cells is caused by a decrease in the phosphorylation level of the HMGCR, associated with the inactivation of AMPK. In agreement, AMPK activation by metformin reduces HMGCR activity and affects viral replication. The role HMGCR and AMPK activity in DENV replicative complexes formation was confirmed by the co-localization of HMGCR and cholesterol with the viral proteins NS3, NS4A and E. Furthermore, metformin and lovastatin (HMGCR inhibitor) treatments altered this co-localization as well as replicative complexes formation supporting that active HMGCR is required for replicative complexes formation. The results show that during DENV infection, an increase in the HMGCR activity occurs through AMPK inactivation, leading to higher cholesterol levels in endoplasmic reticulum necessary for replicative complexes formation. This work provides new information about the mechanisms involved in host lipid metabolism during DENV replicative cycle and identifies potential new antiviral targets for DENV replication.
Collapse
Affiliation(s)
- Rubén Soto-Acosta
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México, D.F., México
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States of America
| | | | | | | | - Rosa M. del Angel
- Departmento de Infectómica y Patogénesis Molecular, CINVESTAV-IPN, México, D.F., México
- * E-mail:
| |
Collapse
|
11
|
Wang HL, Wang YY, Liu XG, Kuo SH, Liu N, Song QY, Wang MW. Cholesterol, 24-Hydroxycholesterol, and 27-Hydroxycholesterol as Surrogate Biomarkers in Cerebrospinal Fluid in Mild Cognitive Impairment and Alzheimer's Disease: A Meta-Analysis. J Alzheimers Dis 2016; 51:45-55. [PMID: 26836015 DOI: 10.3233/jad-150734] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abnormal cholesterol metabolism is an established feature of Alzheimer's disease (AD). Cerebrospinal fluid (CSF) is the fluid surrounding the central nervous system, and the protein and lipid content alterations in the CSF could be biomarkers for degenerative changes in the brain. The laboratory diagnosis of AD is limited to the analysis of three biomarkers in CSF: Aβ42, total tau, and phospho-tau. The purpose of this analysis is to systematically analyze the available data describing the biomarkers of cholesterol and its metabolites in the CSF of subjects with AD. MEDLINE, EMBASE, and the Cochrane Central database were systematically queried to collect studies that have evaluated the markers of cholesterol and its metabolites in the CSF of subjects with mild cognitive impairment (MCI) or AD and age-matched controls. Analysis of the published data shows that the levels of cholesterol are increased in MCI subjects; 24-hydroxycholesterol and 27-hydroxycholesterol are elevated in AD and MCI subjects compared to controls. There is a significant dysfunction of cholesterol metabolism in the CSF of AD subjects. This analysis indicates that in addition to the available biomarkers in the CSF, such as Aβ42, total tau, and phospho-tau, 24-hydroxycholesterol, 27-hydroxycholesterol, and cholesterol appear to be sensitive biomarkers for the evaluation of MCI and AD.
Collapse
Affiliation(s)
- Hua-Long Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yan-Yong Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Xin-Gang Liu
- Department of Rehabilitation, Jingxing Hospital, Jingxing, Hebei, PR China
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Na Liu
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Qiao-Yun Song
- Department of Reproductive Genetics, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Ming-Wei Wang
- Department of Neurology, the First Hospital of Hebei Medical University, Shijiazhuang, Hebei, PR China.,Brain Aging and Cognitive Neuroscience Laboratory of Hebei province, Shijiazhuang, Hebei, PR China
| |
Collapse
|