1
|
Cao Y, Wu Y, Dong Q, Huang N, Zou Z, Chen H. Neurite orientation dispersion and density imaging quantifies microstructural impairment in the thalamus and its connectivity in amyotrophic lateral sclerosis. CNS Neurosci Ther 2024; 30:e14616. [PMID: 38334027 PMCID: PMC10853891 DOI: 10.1111/cns.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/13/2023] [Accepted: 01/11/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS To evaluate microstructural impairment in the thalamus and thalamocortical connectivity using neurite orientation dispersion and density imaging (NODDI) in amyotrophic lateral sclerosis (ALS). METHODS This study included 47 healthy controls and 43 ALS patients, whose structural and diffusion-weighted data were collected. We used state-of-the-art parallel transport tractography to identify thalamocortical pathways in individual spaces. Thalamus was then parcellated into six subregions based on its connectivity pattern with the priori defined cortical (i.e., prefrontal/motor/somatosensory/temporal/posterior-parietal/occipital) regions. For each of the thalamic and cortical subregions and thalamo-cortical tracts, we compared the following NODDI metrics between groups: orientation dispersion index (ODI), neurite density index (NDI), and isotropic volume fraction (ISO). We also used these metrics to conduct receiver operating characteristic curve (ROC) analyses and Spearman correlation. RESULTS In ALS patients, we found decreased ODI and increased ISO in the thalamic subregion connecting the left motor cortex and other extramotor (e.g., somatosensory and occipital) cortex (Bonferroni-corrected p < 0.05). NDI decreased in the bilateral thalamo-motor and thalamo-somatosensory tracts and in the right thalamo-posterior-parietal and thalamo-occipital tracts (Bonferroni-corrected p < 0.05). NDI reduction in the bilateral thalamo-motor tract (p = 0.017 and 0.009) and left thalamo-somatosensory tract (p = 0.029) was correlated with disease severity. In thalamo-cortical tracts, NDI yielded a higher effect size during between-group comparisons and a greater area under ROC (p < 0.05) compared with conventional diffusion tensor imaging metrics. CONCLUSIONS Microstructural impairment in the thalamus and thalamocortical connectivity is the hallmark of ALS. NODDI improved the detection of disrupted thalamo-cortical connectivity in ALS.
Collapse
Affiliation(s)
- Yun‐Bin Cao
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Ye Wu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Qiu‐Yi Dong
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Nao‐Xin Huang
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Zhang‐Yu Zou
- Department of NeurologyFujian Medical University Union HospitalFuzhouChina
| | - Hua‐Jun Chen
- Department of RadiologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
2
|
Chen H, Hu Z, Ke Z, Xu Y, Bai F, Liu Z. Aberrant Multimodal Connectivity Pattern Involved in Default Mode Network and Limbic Network in Amyotrophic Lateral Sclerosis. Brain Sci 2023; 13:brainsci13050803. [PMID: 37239275 DOI: 10.3390/brainsci13050803] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that progressively affects bulbar and limb function. Despite increasing recognition of the disease as a multinetwork disorder characterized by aberrant structural and functional connectivity, its integrity agreement and its predictive value for disease diagnosis remain to be fully elucidated. In this study, we recruited 37 ALS patients and 25 healthy controls (HCs). High-resolution 3D T1-weighted imaging and resting-state functional magnetic resonance imaging were, respectively, applied to construct multimodal connectomes. Following strict neuroimaging selection criteria, 18 ALS and 25 HC patients were included. Network-based statistic (NBS) and the coupling of grey matter structural-functional connectivity (SC-FC coupling) were performed. Finally, the support vector machine (SVM) method was used to distinguish the ALS patients from HCs. Results showed that, compared with HCs, ALS individuals exhibited a significantly increased functional network, predominantly encompassing the connections between the default mode network (DMN) and the frontoparietal network (FPN). The increased structural connections predominantly involved the inter-regional connections between the limbic network (LN) and the DMN, the salience/ventral attention network (SVAN) and FPN, while the decreased structural connections mainly involved connections between the LN and the subcortical network (SN). We also found increased SC-FC coupling in DMN-related brain regions and decoupling in LN-related brain regions in ALS, which could differentiate ALS from HCs with promising capacity based on SVM. Our findings highlight that DMN and LN may play a vital role in the pathophysiological mechanism of ALS. Additionally, SC-FC coupling could be regarded as a promising neuroimaging biomarker for ALS and shows important clinical potential for early recognition of ALS individuals.
Collapse
Affiliation(s)
- Haifeng Chen
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zheqi Hu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Medical School of Nanjing University, Nanjing University, Nanjing 210093, China
| | - Zhihong Ke
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
- Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing 211166, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| | - Zhuo Liu
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing 210008, China
| |
Collapse
|
3
|
Castelnovo V, Canu E, De Mattei F, Filippi M, Agosta F. Basal ganglia alterations in amyotrophic lateral sclerosis. Front Neurosci 2023; 17:1133758. [PMID: 37090799 PMCID: PMC10113480 DOI: 10.3389/fnins.2023.1133758] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/09/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been associated with brain damage involving the primary motor cortices and corticospinal tracts. In the recent decades, most of the research studies in ALS have focused on extra-motor and subcortical brain regions. The aim of these studies was to detect additional biomarkers able to support the diagnosis and to predict disease progression. The involvement of the frontal cortices, mainly in ALS cases who develop cognitive and/or behavioral impairment, is amply recognized in the field. A potential involvement of fronto-temporal and fronto-striatal connectivity changes in the disease evolution has also been reported. On this latter regard, there is still a shortage of studies which investigated basal ganglia (BG) alterations and their role in ALS clinical manifestation and progression. The present review aims to provide an overview on the magnetic resonance imaging studies reporting structural and/or functional BG alterations in patients with ALS, to clarify the role of BG damage in the disease clinical evolution and to propose potential future developments in this field.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Filippo De Mattei
- ALS Center, SC Neurologia 1U, AOU Città della Salute e della Scienza of Torino, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- *Correspondence: Federica Agosta,
| |
Collapse
|
4
|
McKenna MC, Lope J, Bede P, Tan EL. Thalamic pathology in frontotemporal dementia: Predilection for specific nuclei, phenotype-specific signatures, clinical correlates, and practical relevance. Brain Behav 2023; 13:e2881. [PMID: 36609810 PMCID: PMC9927864 DOI: 10.1002/brb3.2881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) phenotypes are classically associated with distinctive cortical atrophy patterns and regional hypometabolism. However, the spectrum of cognitive and behavioral manifestations in FTD arises from multisynaptic network dysfunction. The thalamus is a key hub of several corticobasal and corticocortical circuits. The main circuits relayed via the thalamic nuclei include the dorsolateral prefrontal circuit, the anterior cingulate circuit, and the orbitofrontal circuit. METHODS In this paper, we have reviewed evidence for thalamic pathology in FTD based on radiological and postmortem studies. Original research papers were systematically reviewed for preferential involvement of specific thalamic regions, for phenotype-associated thalamic disease burden patterns, characteristic longitudinal changes, and genotype-associated thalamic signatures. Moreover, evidence for presymptomatic thalamic pathology was also reviewed. Identified papers were systematically scrutinized for imaging methods, cohort sizes, clinical profiles, clinicoradiological associations, and main anatomical findings. The findings of individual research papers were amalgamated for consensus observations and their study designs further evaluated for stereotyped shortcomings. Based on the limitations of existing studies and conflicting reports in low-incidence FTD variants, we sought to outline future research directions and pressing research priorities. RESULTS FTD is associated with focal thalamic degeneration. Phenotype-specific thalamic traits mirror established cortical vulnerability patterns. Thalamic nuclei mediating behavioral and language functions are preferentially involved. Given the compelling evidence for considerable thalamic disease burden early in the course of most FTD subtypes, we also reflect on the practical relevance, diagnostic role, prognostic significance, and monitoring potential of thalamic metrics in FTD. CONCLUSIONS Cardinal manifestations of FTD phenotypes are likely to stem from thalamocortical circuitry dysfunction and are not exclusively driven by focal cortical changes.
Collapse
Affiliation(s)
- Mary Clare McKenna
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Jasmin Lope
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Peter Bede
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.,Department of Neurology, St James's Hospital, Dublin, Ireland
| | - Ee Ling Tan
- Computational Neuroimaging Group, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Fan Y, Bao C, Wei Y, Wu J, Zhao Y, Zeng X, Qin W, Wu H, Liu P. Altered functional connectivity of the amygdala in Crohn's disease. Brain Imaging Behav 2021; 14:2097-2106. [PMID: 31628591 DOI: 10.1007/s11682-019-00159-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Crohn's disease (CD), a chronic inflammatory bowel disease, involved in brain structural and functional changes, including the amygdala. Amygdala is a key structure in the limbic system and its related circuits are implicated in processing of emotion, pain and sensory. However, limited study of the amygdala is elucidated in CD. This study mainly investigated altered functional connectivity (FC) of the amygdala in CD patients during resting-state. Magnetic resonance imaging scans were acquired from 42 CD patients and 35 healthy controls (HCs). Whole amygdala bilaterally were selected as regions of interest (ROIs). Voxel-based morphometry and FC methods were applied to investigate the differences of structure or intrinsic connectivity of the amygdala between the two groups, separately. Pearson correlations were performed to explore relationships between the clinical characteristics and neuroimaging findings in CD patients. Based on the whole amygdala bilaterally as ROIs, compared with HCs, CD patients showed no statistical differences of grey matter destiny but exhibited decreased FC between the amygdala and insula, parahippocampus, as well as anterior middle cingulate cortex/dorsal anterior cingulate cortex. CD patients had negative correlation between the disease duration and amygdala-insula connectivity. In the patient group, patients with higher anxiety or depression scores revealed increased FC of the amygdala with thalamus and orbitofrontal cortex. Our results reveal that aberrant FC of the amygdala may be involved in processing of visceral pain and sensation, and emotion in CD. These findings may further enhance the understanding of neural mechanisms of CD.
Collapse
Affiliation(s)
- Yingying Fan
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Chunhui Bao
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China
| | - Ying Wei
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Jiayu Wu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yingsong Zhao
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Xiao Zeng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Wei Qin
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Huangan Wu
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai, 200030, China.
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
- Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
| |
Collapse
|
6
|
"Switchboard" malfunction in motor neuron diseases: Selective pathology of thalamic nuclei in amyotrophic lateral sclerosis and primary lateral sclerosis. NEUROIMAGE-CLINICAL 2020; 27:102300. [PMID: 32554322 PMCID: PMC7303672 DOI: 10.1016/j.nicl.2020.102300] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/22/2020] [Accepted: 05/23/2020] [Indexed: 02/06/2023]
Abstract
The thalamus is a key cerebral hub relaying a multitude of corticoefferent and corticoafferent connections and mediating distinct extrapyramidal, sensory, cognitive and behavioural functions. While the thalamus consists of dozens of anatomically well-defined nuclei with distinctive physiological roles, existing imaging studies in motor neuron diseases typically evaluate the thalamus as a single structure. Based on the unique cortical signatures observed in ALS and PLS, we hypothesised that similarly focal thalamic involvement may be observed if the nuclei are individually evaluated. A prospective imaging study was undertaken with 100 patients with ALS, 33 patients with PLS and 117 healthy controls to characterise the integrity of thalamic nuclei. ALS patients were further stratified for the presence of GGGGCC hexanucleotide repeat expansions in C9orf72. The thalamus was segmented into individual nuclei to examine their volumetric profile. Additionally, thalamic shape deformations were evaluated by vertex analyses and focal density alterations were examined by region-of-interest morphometry. Our data indicate that C9orf72 negative ALS patients and PLS patients exhibit ventral lateral and ventral anterior involvement, consistent with the ‘motor’ thalamus. Degeneration of the sensory nuclei was also detected in C9orf72 negative ALS and PLS. Both ALS groups and the PLS cohort showed focal changes in the mediodorsal-paratenial-reuniens nuclei, which mediate memory and executive functions. PLS patients exhibited distinctive thalamic changes with marked pulvinar and lateral geniculate atrophy compared to both controls and C9orf72 negative ALS. The considerable ventral lateral and ventral anterior pathology detected in both ALS and PLS support the emerging literature of extrapyramidal dysfunction in MND. The involvement of sensory nuclei is consistent with sporadic reports of sensory impairment in MND. The unique thalamic signature of PLS is in line with the distinctive clinical features of the phenotype. Our data confirm phenotype-specific patterns of thalamus involvement in motor neuron diseases with the preferential involvement of nuclei mediating motor and cognitive functions. Given the selective involvement of thalamic nuclei in ALS and PLS, future biomarker and natural history studies in MND should evaluate individual thalamic regions instead overall thalamic changes.
Collapse
|
7
|
Zhang Y, Jiang L, Zhang D, Wang L, Fei X, Liu X, Fu X, Niu C, Wang Y, Qian R. Thalamocortical structural connectivity abnormalities in drug-resistant generalized epilepsy: A diffusion tensor imaging study. Brain Res 2020; 1727:146558. [PMID: 31794706 DOI: 10.1016/j.brainres.2019.146558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE Epilepsy is one of the most common diseases of the nervous system. Approximately one-third of epilepsy cases are drug-resistant, among which generalized-onset seizures are very common. The present study aimed to analyze abnormalities of the thalamocortical fiber pathways in each hemisphere of the brains of patients with drug-resistant generalized epilepsy. MATERIALS AND METHODS The thalamocortical structural pathways were identified by diffusion tensor imaging (DTI) in 15 patients with drug-resistant generalized epilepsy and 16 gender/age-matched controls. The thalami of both groups were parcellated into subregions according to the local thalamocortical connectivity pattern. DTI measures of thalamocortical connections were compared between the two groups. RESULTS Probabilistic tractography analyses showed that fractional anisotropy of thalamocortical pathways in patients with epilepsy decreased significantly, and the radial diffusivity of the left thalamus pathways with homolateral motor and parietal-occipital cortical regions in the drug-resistant epilepsy group increased significantly. In addition to the right thalamus pathway and prefrontal cortical region, fractional anisotropy of all other pathways was inversely correlated with disease duration. CONCLUSION The results provide evidence indicating widespread bilateral abnormalities in the thalamocortical pathways in epilepsy patients and imply that the degree of abnormality in the pathway increases with the disease duration.
Collapse
Affiliation(s)
- Yiming Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Hospital Affiliated to Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, PR China
| | - Luwei Jiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Hospital Affiliated to Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, PR China
| | - Dong Zhang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Lanlan Wang
- Department of Nerve Electrophysiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Xiaorui Fei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Xiang Liu
- Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China; Department of Nerve Electrophysiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China
| | - Xianming Fu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China
| | - Yehan Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China
| | - Ruobing Qian
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, PR China; Anhui Provincial Hospital Affiliated to Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province 230032, PR China; Anhui Provincial Institute of Stereotactic Neurosurgery, 9 Lujiang Road, Hefei, Anhui Province 230001, PR China.
| |
Collapse
|
8
|
Trojsi F, Caiazzo G, Siciliano M, Femiano C, Passaniti C, Russo A, Bisecco A, Monsurrò MR, Cirillo M, Esposito F, Tedeschi G, Santangelo G. Microstructural correlates of Edinburgh Cognitive and Behavioural ALS Screen (ECAS) changes in amyotrophic lateral sclerosis. Psychiatry Res Neuroimaging 2019; 288:67-75. [PMID: 30987770 DOI: 10.1016/j.pscychresns.2019.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Edinburgh Cognitive and Behavioural ALS Screen (ECAS) was designed for testing patients with amyotrophic lateral sclerosis (ALS), a multi-system neurodegenerative disease characterized by progressive physical disability. In this study, we aim to explore the potential brain microstructural substrates associated with performance on ECAS in the early stages of ALS, using a whole-brain tract-based spatial statistics diffusion tensor imaging approach. Thirty-six non-demented ALS patients, assessed using ECAS, and 35 age-, sex- and education-matched healthy controls underwent magnetic resonance imaging at 3 Tesla. The ALS patients showed decreased fractional anisotropy (FA) in the cortico-spinal tracts and corpus callosum (CC) and significant association between verbal fluency score, among ALS-specific ECAS scores, and FA measures in several long association fiber tracts in the frontal, temporal and parietal lobes. Furthermore, the ALS non-specific total score was inversely related to axial diffusivity (AD) in the mediodorsal nucleus of the thalamus, with more extended areas of correlation in the CC, when considering only the memory subscore. Our results point towards microstructural degeneration across motor and extra-motor areas in ALS, underlining that alterations in verbal fluency performances may be related to impairment of frontotemporal connectivity, while alterations of memory may be associated with damage of thalamocortical circuits.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy.
| | - Giuseppina Caiazzo
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy; Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Cinzia Femiano
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Carla Passaniti
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy; Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonio Russo
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Alvino Bisecco
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Maria Rosaria Monsurrò
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Mario Cirillo
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Fabrizio Esposito
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana" University of Salerno, Baronissi, Salerno, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, MRI Research Centre "SUN-FISM", University of Campania "Luigi Vanvitelli", P.zza Miraglia 2, Naples 80138, Italy
| | - Gabriella Santangelo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
9
|
Tu S, Menke RAL, Talbot K, Kiernan MC, Turner MR. Regional thalamic MRI as a marker of widespread cortical pathology and progressive frontotemporal involvement in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry 2018; 89:1250-1258. [PMID: 30049750 DOI: 10.1136/jnnp-2018-318625] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The thalamus is a major neural hub, with selective connections to virtually all cortical regions of the brain. The multisystem neurodegenerative syndrome amyotrophic lateral sclerosis (ALS) has pathogenic overlap with frontotemporal dementia, and objective in vivo markers of extra-motor pathological spread are lacking. To better consider the role of the thalamus in neurodegeneration, the present study assessed the integrity of the thalamus and its connectivity to major cortical regions of the brain in a longitudinal manner. METHODS Diffusion-based MRI tractography was used to parcellate the thalamus into distinct regions based on structural thalamo-cortical connectivity in 20 patients with ALS, half of whom were scanned at two time points, and 31 matched controls scanned on a single occasion. RESULTS At baseline, widespread diffusivity alterations in motor- and extramotor-associated thalamic parcellations were detectable. Longitudinal decline selectively affected thalamic regions associated with frontal and temporal lobe connectivity. Diffusivity measures were significantly correlated with clinical measures of disease burden. Progression of functional disability, as indicated by change on the ALS functional rating scale, was associated with longitudinal change in mean diffusivity of the right frontal lobe thalamic parcellation (r=0.59, p=0.05). CONCLUSIONS Regional thalamic connectivity changes mirror the progressive frontotemporal cortical involvement associated with the motor functional decline in ALS. Longitudinal MRI thalamic parcellation has potential as a non-invasive surrogate marker of cortical dysfunction in ALS.
Collapse
Affiliation(s)
- Sicong Tu
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia .,Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Ricarda A L Menke
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew C Kiernan
- Brain and Mind Centre, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Martin R Turner
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK .,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|