1
|
Li J, Yang D, Ge S, Liu L, Huo Y, Hu Z. Identifying hub genes of sepsis-associated and hepatic encephalopathies based on bioinformatic analysis-focus on the two common encephalopathies of septic cirrhotic patients in ICU. BMC Med Genomics 2024; 17:19. [PMID: 38212812 PMCID: PMC10785360 DOI: 10.1186/s12920-023-01774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND In the ICU ward, septic cirrhotic patients are susceptible to suffering from sepsis-associated encephalopathy and/or hepatic encephalopathy, which are two common neurological complications in such patients. However, the mutual pathogenesis between sepsis-associated and hepatic encephalopathies remains unclear. We aimed to identify the mutual hub genes, explore effective diagnostic biomarkers and therapeutic targets for the two common encephalopathies and provide novel, promising insights into the clinical management of such septic cirrhotic patients. METHODS The precious human post-mortem cerebral tissues were deprived of the GSE135838, GSE57193, and GSE41919 datasets, downloaded from the Gene Expression Omnibus database. Furthermore, we identified differentially expressed genes and screened hub genes with weighted gene co-expression network analysis. The hub genes were then subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway functional enrichment analyses, and protein-protein interaction networks were constructed. Receiver operating characteristic curves and correlation analyses were set up for the hub genes. Finally, we explored principal and common signaling pathways by using Gene Set Enrichment Analysis and the association between the hub genes and immune cell subtype distribution by using CIBERSORT algorithm. RESULTS We identified seven hub genes-GPR4, SOCS3, BAG3, ZFP36, CDKN1A, ADAMTS9, and GADD45B-by using differentially expressed gene analysis and weighted gene co-expression network analysis method. The AUCs of these genes were all greater than 0.7 in the receiver operating characteristic curves analysis. The Gene Set Enrichment Analysis results demonstrated that mutual signaling pathways were mainly enriched in hypoxia and inflammatory response. CIBERSORT indicated that these seven hub genes were closely related to innate and adaptive immune cells. CONCLUSIONS We identified seven hub genes with promising diagnostic value and therapeutic targets in septic cirrhotic patients with sepsis-associated encephalopathy and/or hepatic encephalopathy. Hypoxia, inflammatory, and immunoreaction responses may share the common downstream pathways of the two common encephalopathies, for which earlier recognition and timely intervention are crucial for management of such septic cirrhotic patients in ICU.
Collapse
Affiliation(s)
- Juan Li
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Dong Yang
- Department of Emergency (Xiangjiang Hospital), The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, Hebei, China
| | - Shengmei Ge
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Lixia Liu
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Yan Huo
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China
| | - Zhenjie Hu
- Department of Intensive Care Unit, Hebei Key Laboratory of Critical Disease Mechanism and Intervention, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
2
|
Satpati A, Neylan T, Grinberg LT. Histaminergic neurotransmission in aging and Alzheimer's disease: A review of therapeutic opportunities and gaps. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12379. [PMID: 37123051 PMCID: PMC10130560 DOI: 10.1002/trc2.12379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 05/02/2023]
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disorderfeaturing a brain accumulation of extracellular β-amyloidplaques (Aβ) and intracellular neurofibrillary tautangles (NFTs). Although cognitive decline is a disease-defining symptom of AD, sleep dysfunction, a common symptom often preceding cognitive decline, hasrecently gained more attention as a core AD symptom. Polysomnography and othersleep measures show sleep fragmentation with shortening of N3 sleep togetherwith excessive daytime sleepiness (EDS) and sundowning as the main findings in AD patients. The latter reflects dysfunction of the wake-promoting neurons (WPNs), including histaminergic neurons (HAN) located in thetuberomammillary nucleus (TMN) of the posterior hypothalamus, which projectunmyelinated axons to various parts of the brain. Histamine's role in cognitionand arousal is broadly recognized. Selective targeting of histaminergic subtype-3 and 4 receptors show therapeutic potential in rodent models of AD andaging. Method Based on PubMed, Scopus, and google scholar databases search, this review summarizes the current knowledge on the histaminergic system in AD and aging, its therapeutic potential in AD, and highlight areas where moreresearch is needed. Results Animal studies have demonstrated that pharmacological manipulation of histaminergic receptors or histamine supplementation improves cognition in AD models. However, measurements of HA or HA metabolite levels in the human brainand CSF present contradictory reports due to either lack of power or controls for known confounders. Discussion Systemic studies including broad age, sex, neuropathological diagnosis, and disease stage are warranted to fill the gap in our current understanding of the histaminergic neurotransmitter/neuromodulator system in humans, especially age-related changes, and therapeuticpotential of histamine in AD-related dysfunction.
Collapse
Affiliation(s)
- Abhijit Satpati
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Thomas Neylan
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Weill Institute of NeuroscienceUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Lea T. Grinberg
- Memory and Aging CenterDepartment of NeurologySandler Neurosciences CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| |
Collapse
|
3
|
Enriched environment ameliorates learning and memory deficits in hepatic encephalopathy mice by restoration of the structure of dendrites and dendritic spines. Brain Res 2023; 1804:148264. [PMID: 36702182 DOI: 10.1016/j.brainres.2023.148264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/24/2023]
Abstract
Cognitive impairment is one of the most common symptoms of hepatic encephalopathy (HE). However, there is a lack of easily implementable rehabilitation strategies. As an easy-to-implement strategy, numerous studies suggest that enriched environment (EE) can be beneficial for cognitive function. However, the effects of EE on learning and memory, as well as dendritic spines plasticity in HE is still unclear. Accordingly, in the present study, we evaluated the effects of EE on the behavior and dendritic spine morphology in an animal model of HE. Our results showed that HE mice have no movement disorder and anxiety, but they exhibit spatial learning and memory dysfunction. Further analysis revealed that the complexity of the dendrites and the maturity of the dendritic spines are reduced in the hippocampus of HE mice. After 4 weeks of housekeeping in EE, dendritic complexity, and dendritic spine maturity, as well as the spatial learning and memory function of HE mice were restored. In conclusion, exposure to EE can positively influence dendritic spines plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions in HE.
Collapse
|
4
|
Sergeeva OA, Mazur K, Reiner-Link D, Lutsenko K, Haas HL, Alfonso-Prieto M, Stark H. OLHA (N α-oleoylhistamine) modulates activity of mouse brain histaminergic neurons. Neuropharmacology 2022; 215:109167. [PMID: 35750238 DOI: 10.1016/j.neuropharm.2022.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
Histaminergic (HA) neurons are located in the tuberomamillary nucleus (TMN) of the posterior hypothalamus, from where they project throughout the whole brain to control wakefulness. We examined the effects of Nα-oleoylhistamine (OLHA), a non-enzymatic condensation product of oleic acid (OLA) and histamine, on activity of mouse HA neurons in brain slices. OLHA bidirectionally modulated the firing of HA neurons. At 10 nM OLHA inhibited or had no action, whereas at 1 μM it evoked excitatory and inhibitory responses. Inhibition was not seen in presence of the histamine receptor H3 (H3R) antagonist clobenpropit and in calcium-free medium. Pre-incubation with a histamine-reuptake blocker prevented the decrease in firing by OLHA. OLHA-evoked increase in firing (EC50 ∼44 nM) was insensitive to blockers of cannabinoid 1 and 2 receptors and of the capsaicin receptor, but was significantly impaired by the peroxisome proliferator-activated receptor-alpha (PPAR-alpha) antagonist MK886, which suppressed also the rise in intracellular calcium level caused by OLHA. The OLHA-evoked excitation was mimicked by synthetic PPAR-alpha agonists (gemfibrozil and GW7647) and was abolished by the PKA inhibitor H-89. The H3R affinity (Ki) for histamine, measured in HEK293 cells with stable expression of human H3R, was higher than for OLHA (Ki: 42 vs 310 nM, respectively). Expression of PPAR-alpha was not different between TMN regions of males and females, responses to OLHA did not differ. Molecular modelling of PPAR-alpha bound to either OLHA or OEA showed similar binding energies. These findings shed light on a novel biotransformation product of histamine which may play a role in health and disease.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Institute of Neural and Sensory Physiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; Institute of Clinical Neurosciences and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
| | - Karolina Mazur
- Institute of Clinical Neurosciences and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - David Reiner-Link
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Kiril Lutsenko
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Helmut L Haas
- Institute of Neural and Sensory Physiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Mercedes Alfonso-Prieto
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany; Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
5
|
Qian H, Shu C, Xiao L, Wang G. Histamine and histamine receptors: Roles in major depressive disorder. Front Psychiatry 2022; 13:825591. [PMID: 36213905 PMCID: PMC9537353 DOI: 10.3389/fpsyt.2022.825591] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Although the incidence of major depressive disorder (MDD) is high and its social impact is great, we still know very little about the pathophysiology of depression. The monoamine hypothesis of depression suggests that 5-HT, NE, and DA synergistically affect mood, which is the basis of current drug therapy for depression. However, histamine as a monoamine transmitter is rarely studied. Our review is the first time to illustrate the effect of histaminergic system on depression in order to find the way for the development of new antidepressant drugs. The brain neurotransmitter histamine is involved in MDD, and the brain histaminergic system operates through four receptors. Histamine and its receptors can also regulate the immune response to improve symptoms of depression. In addition, H3R can interact with other depression-related transmitters (including 5-HT, DA, GLU, and MCH); thus, histamine may participate in the occurrence of depression through other neural circuits. Notably, in rodent studies, several H3R and H1R antagonists were found to be safe and effective in alleviating depression-like behavior. To highlight the complex functions of histamine in depression, and reveals that histamine receptors can be used as new targets for antidepressant therapy.
Collapse
Affiliation(s)
- Hong Qian
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China.,Division of Child Healthcare, Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Shu
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Xiao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gaohua Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Hsu SJ, Zhang C, Jeong J, Lee SI, McConnell M, Utsumi T, Iwakiri Y. Enhanced Meningeal Lymphatic Drainage Ameliorates Neuroinflammation and Hepatic Encephalopathy in Cirrhotic Rats. Gastroenterology 2021; 160:1315-1329.e13. [PMID: 33227282 PMCID: PMC7956141 DOI: 10.1053/j.gastro.2020.11.036] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatic encephalopathy (HE) is a serious neurologic complication in patients with liver cirrhosis. Very little is known about the role of the meningeal lymphatic system in HE. We tested our hypothesis that enhancement of meningeal lymphatic drainage could decrease neuroinflammation and ameliorate HE. METHODS A 4-week bile duct ligation model was used to develop cirrhosis with HE in rats. Brain inflammation in patients with HE was evaluated by using archived GSE41919. The motor function of rats was assessed by the rotarod test. Adeno-associated virus 8-vascular endothelial growth factor C (AAV8-VEGF-C) was injected into the cisterna magna of HE rats 1 day after surgery to induce meningeal lymphangiogenesis. RESULTS Cirrhotic rats with HE showed significantly increased microglia activation in the middle region of the cortex (P < .001) as well as increased neuroinflammation, as indicated by significant increases in interleukin 1β, interferon γ, tumor necrosis factor α, and ionized calcium binding adaptor molecule 1 (Iba1) expression levels in at least 1 of the 3 regions of the cortex. Motor function was also impaired in rats with HE (P < .05). Human brains of patients with cirrhosis with HE also exhibited up-regulation of proinflammatory genes (NFKB1, IbA1, TNF-α, and IL1β) (n = 6). AAV8-VEGF-C injection significantly increased meningeal lymphangiogenesis (P = .035) and tracer dye uptake in the anterior and middle regions of the cortex (P = .006 and .003, respectively), their corresponding meninges (P = .086 and .006, respectively), and the draining lymph nodes (P = .02). Furthermore, AAV8-VEGF-C decreased microglia activation (P < .001) and neuroinflammation and ameliorated motor dysfunction (P = .024). CONCLUSIONS Promoting meningeal lymphatic drainage and enhancing waste clearance improves HE. Manipulation of meningeal lymphangiogenesis could be a new therapeutic strategy for the treatment of HE.
Collapse
Affiliation(s)
- Shao-Jung Hsu
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA,Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital and Faculty of Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chihao Zhang
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jain Jeong
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Seong-il Lee
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Matthew McConnell
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Teruo Utsumi
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Yasuko Iwakiri
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
7
|
Tarazona S, Carmona H, Conesa A, Llansola M, Felipo V. A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biol Toxicol 2021; 37:129-149. [PMID: 33404927 DOI: 10.1007/s10565-020-09572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/12/2020] [Indexed: 12/01/2022]
Abstract
Patients with liver cirrhosis may develop covert or minimal hepatic encephalopathy (MHE). Hyperammonemia (HA) and peripheral inflammation play synergistic roles in inducing the cognitive and motor alterations in MHE. The cerebellum is one of the main cerebral regions affected in MHE. Rats with chronic HA show some motor and cognitive alterations reproducing neurological impairment in cirrhotic patients with MHE. Neuroinflammation and altered neurotransmission and signal transduction in the cerebellum from hyperammonemic (HA) rats are associated with motor and cognitive dysfunction, but underlying mechanisms are not completely known. The aim of this work was to use a multi-omic approach to study molecular alterations in the cerebellum from hyperammonemic rats to uncover new molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment. We analyzed metabolomic, transcriptomic, and proteomic data from the same cerebellums from control and HA rats and performed a multi-omic integrative analysis of signaling pathway enrichment with the PaintOmics tool. The histaminergic system, corticotropin-releasing hormone, cyclic GMP-protein kinase G pathway, and intercellular communication in the cerebellar immune system were some of the most relevant enriched pathways in HA rats. In summary, this is a good approach to find altered pathways, which helps to describe the molecular mechanisms involved in the alteration of brain function in rats with chronic HA and to propose possible therapeutic targets to improve MHE symptoms.
Collapse
Affiliation(s)
- Sonia Tarazona
- Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València, Valencia, Spain
| | - Héctor Carmona
- Department of Microbiology and Ecology, Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BioTecMed), Universidad de Valencia, Valencia, Spain
| | - Ana Conesa
- Microbiology and Cell Science Department, Institute for Food and Agricultural Research, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain.
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo Yúfera, 3, 46012, Valencia, Spain
| |
Collapse
|
8
|
Sergeeva OA, Chepkova AN, Görg B, Rodrigues Almeida F, Bidmon HJ, Haas HL, Häussinger D. Histamine-induced plasticity and gene expression in corticostriatal pathway under hyperammonemia. CNS Neurosci Ther 2019; 26:355-366. [PMID: 31571389 PMCID: PMC7052803 DOI: 10.1111/cns.13223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 08/10/2019] [Accepted: 09/04/2019] [Indexed: 01/13/2023] Open
Abstract
Aims Histamine H3 receptor (H3R) antagonists/inverse agonists increase vigilance. We studied brain histaminergic pathways under hyperammonemia and the transcriptome of receptors and their signaling cascades to provide a rationale for wake‐promoting therapies. Methods We analyzed histamine‐induced long‐lasting depression of corticostriatal synaptic transmission (LLDhist). As the expression of dopamine 1 receptors (D1R) is upregulated in LGS‐KO striatum where D1R‐H3R dimers may exist, we investigated actions of H3R and D1R agonists and antagonists. We analyzed transcription of selected genes in cortex and dorsal striatum in a mouse model of inborn hyperammonemia (liver‐specific glutamine synthetase knockout: LGS‐KO) and compared it with human hepatic encephalopathy. Results LGS‐KO mice showed significant reduction of the direct depression (DD) but not the long‐lasting depression (LLD) by histamine. Neither pharmacological activation nor inhibition of D1R significantly affected DDhist and LLDhist in WT striatum, while in LGS‐KO mice D1R activation suppressed LLDhist. Histaminergic signaling was found unchanged at the transcriptional level except for the H2R. A study of cAMP‐regulated genes indicated a significant reduction in the molecular signature of wakefulness in the diseased cortex. Conclusions Our findings provide a rationale for the development of aminergic wake‐promoting therapeutics in hyperammonemic disorders.
Collapse
Affiliation(s)
- Olga A Sergeeva
- Molecular Neurophysiology, Medical Faculty, Institute of Neural and Sensory Physiology, Heinrich-Heine University, Duesseldorf, Germany.,Medical Faculty, Institute of Clinical Neurosciences and Medical Psychology, Heinrich-Heine University, Duesseldorf, Germany
| | - Aisa N Chepkova
- Molecular Neurophysiology, Medical Faculty, Institute of Neural and Sensory Physiology, Heinrich-Heine University, Duesseldorf, Germany.,Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Filipe Rodrigues Almeida
- Medical Faculty, Institute of Clinical Neurosciences and Medical Psychology, Heinrich-Heine University, Duesseldorf, Germany
| | - Hans-Jürgen Bidmon
- Medical Faculty, C.&O. Vogt Institute for Brain Research, Heinrich-Heine University, Duesseldorf, Germany
| | - Helmut L Haas
- Molecular Neurophysiology, Medical Faculty, Institute of Neural and Sensory Physiology, Heinrich-Heine University, Duesseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| |
Collapse
|