1
|
Wang Y, Suo J, Wang Z, Ran K, Tian Y, Han W, Liu Y, Peng X. The PTPRZ1-MET/STAT3/ISG20 axis in glioma stem-like cells modulates tumor-associated macrophage polarization. Cell Signal 2024; 120:111191. [PMID: 38685521 DOI: 10.1016/j.cellsig.2024.111191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Recent studies have revealed that PTPRZ1-MET (ZM) fusion plays a pivotal role in the progression of glioma to glioblastoma multiforme (GBM), thus serving as a biomarker to distinguish between primary GBM and secondary GBM (sGBM). However, the mechanisms through which ZM fusion influences this progression remain to be elucidated. GBMs with ZM showed poorer prognoses and greater infiltration of tumor-associated macrophages (TAMs) than those without ZM. Glioma stem-like cells (GSCs) and TAMs play complex roles in glioma recurrence, glioma progression and therapy resistance. In this study, we analyzed RNA-seq data from sGBM patients' glioma tissues with or without ZM fusion, and found that stemness and macrophage markers were more highly expressed in sGBM patients harboring ZM than in those without ZM fusion. ZM enhanced the self-renewal and proliferation of GSCs, thereby accelerating glioma progression. In addition, ZM-positive GSCs facilitated the infiltration of TAMs and drove their polarization toward an immunosuppressive phenotype, which was primarily accomplished through the extracellular secretion of ISG20. Our research identified the MET-STAT3-ISG20 axis within GSCs, thus demonstrating the critical role of ZM in GBM initiation and progression. Our study demonstrated that, in contrast to ZM-positive differentiated glioma cells, ZM-positive GSCs upregulated ISG20 expression through the MET-STAT3-ISG20 axis. The extracellular secretion of ISG20 recruited and induced M2-like polarization in macrophages, thereby promoting tumor progression. Our results reveal a novel mechanism involved in ZM-positive GBM pathogenesis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jinghao Suo
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhixing Wang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Kunnian Ran
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yuan Tian
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Han
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Yanwei Liu
- Department of Radiation Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience Center, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
2
|
Pham LC, Weller L, Gann CN, Schumacher KM, Vlassak S, Swanson T, Highsmith K, O'Brien BJ, Nash S, Aaroe A, de Groot JF, Majd NK. Prolonged complete response to adjuvant tepotinib in a patient with newly diagnosed disseminated glioblastoma harboring mesenchymal-epithelial transition fusion. Oncologist 2024:oyae100. [PMID: 38815166 DOI: 10.1093/oncolo/oyae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
The prognosis of patients with glioblastoma (GBM) remains poor despite current treatments. Targeted therapy in GBM has been the subject of intense investigation but has not been successful in clinical trials. The reasons for the failure of targeted therapy in GBM are multifold and include a lack of patient selection in trials, the failure to identify driver mutations, and poor blood-brain barrier penetration of investigational drugs. Here, we describe a case of a durable complete response in a newly diagnosed patient with GBM with leptomeningeal dissemination and PTPRZ1-MET fusion who was treated with tepotinib, a brain-penetrant MET inhibitor. This case of successful targeted therapy in a patient with GBM demonstrates that early molecular testing, identification of driver molecular alterations, and treatment with brain-penetrant small molecule inhibitors have the potential to change the outcome in select patients with GBM.
Collapse
Affiliation(s)
- Lily C Pham
- Department of Neurology, University of Maryland, Baltimore, MD, United States
| | - Lauryn Weller
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | | | - Todd Swanson
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kaitlin Highsmith
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Barbara J O'Brien
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sebnem Nash
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ashley Aaroe
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John F de Groot
- Department of Neuro-Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
3
|
Hasegawa N, Hayashi T, Niizuma H, Kikuta K, Imanishi J, Endo M, Ikeuchi H, Sasa K, Sano K, Hirabayashi K, Takagi T, Ishijima M, Kato S, Kohsaka S, Saito T, Suehara Y. Detection of Novel Tyrosine Kinase Fusion Genes as Potential Therapeutic Targets in Bone and Soft Tissue Sarcomas Using DNA/RNA-based Clinical Sequencing. Clin Orthop Relat Res 2024; 482:549-563. [PMID: 38014853 PMCID: PMC10871756 DOI: 10.1097/corr.0000000000002901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND Approximately 1% of clinically treatable tyrosine kinase fusions, including anaplastic lymphoma kinase, neurotrophic tyrosine receptor kinase, RET proto-oncogene, and ROS proto-oncogene 1, have been identified in soft tissue sarcomas via comprehensive genome profiling based on DNA sequencing. Histologic tumor-specific fusion genes have been reported in approximately 20% of soft tissue sarcomas; however, unlike tyrosine kinase fusion genes, these fusions cannot be directly targeted in therapy. Approximately 80% of tumor-specific fusion-negative sarcomas, including myxofibrosarcoma and leiomyosarcoma, that are defined in complex karyotype sarcomas remain genetically uncharacterized; this mutually exclusive pattern of mutations suggests that other mutually exclusive driver oncogenes are yet to be discovered. Tumor-specific, fusion-negative sarcomas may be associated with unique translocations, and oncogenic fusion genes, including tyrosine kinase fusions, may have been overlooked in these sarcomas. QUESTIONS/PURPOSES (1) Can DNA- or RNA-based analysis reveal any characteristic gene alterations in bone and soft tissue sarcomas? (2) Can useful and potential tyrosine kinase fusions in tumors from tumor-specific, fusion-negative sarcomas be detected using an RNA-based screening system? (3) Do the identified potential fusion tumors, especially in neurotrophic tyrosine receptor kinase gene fusions in bone sarcoma, transform cells and respond to targeted drug treatment in in vitro assays? (4) Can the identified tyrosine kinase fusion genes in sarcomas be useful therapeutic targets? METHODS Between 2017 and 2020, we treated 100 patients for bone and soft tissue sarcomas at five institutions. Any biopsy or surgery from which a specimen could be obtained was included as potentially eligible. Ninety percent (90 patients) of patients were eligible; a further 8% (8 patients) were excluded because they were either lost to follow-up or their diagnosis was changed, leaving 82% (82 patients) for analysis here. To answer our first and second questions regarding gene alterations and potential tyrosine kinase fusions in eight bone and 74 soft tissue sarcomas, we used the TruSight Tumor 170 assay to detect mutations, copy number variations, and gene fusions in the samples. To answer our third question, we performed functional analyses involving in vitro assays to determine whether the identified tyrosine kinase fusions were associated with oncogenic abilities and drug responses. Finally, to determine usefulness as therapeutic targets, two pediatric patients harboring an NTRK fusion and an ALK fusion were treated with tyrosine kinase inhibitors in clinical trials. RESULTS DNA/RNA-based analysis demonstrated characteristic alterations in bone and soft tissue sarcomas; DNA-based analyses detected TP53 and copy number alterations of MDM2 and CDK4 . These single-nucleotide variants and copy number variations were enriched in specific fusion-negative sarcomas. RNA-based screening detected fusion genes in 24% (20 of 82) of patients. Useful potential fusions were detected in 19% (11 of 58) of tumor-specific fusion-negative sarcomas, with nine of these patients harboring tyrosine kinase fusion genes; five of these patients had in-frame tyrosine kinase fusion genes ( STRN3-NTRK3, VWC2-EGFR, ICK-KDR, FOXP2-MET , and CEP290-MET ) with unknown pathologic significance. The functional analysis revealed that STRN3-NTRK3 rearrangement that was identified in bone had a strong transforming potential in 3T3 cells, and that STRN3-NTRK3 -positive cells were sensitive to larotrectinib in vitro. To confirm the usefulness of identified tyrosine kinase fusion genes as therapeutic targets, patients with well-characterized LMNA-NTRK1 and CLTC-ALK fusions were treated with tyrosine kinase inhibitors in clinical trials, and a complete response was achieved. CONCLUSION We identified useful potential therapeutic targets for tyrosine kinase fusions in bone and soft tissue sarcomas using RNA-based analysis. We successfully identified STRN3-NTRK3 fusion in a patient with leiomyosarcoma of bone and determined the malignant potential of this fusion gene via functional analyses and drug effects. In light of these discoveries, comprehensive genome profiling should be considered even if the sarcoma is a bone sarcoma. There seem to be some limitations regarding current DNA-based comprehensive genome profiling tests, and it is important to use RNA testing for proper diagnosis and accurate identification of fusion genes. Studies on more patients, validation of results, and further functional analysis of unknown tyrosine kinase fusion genes are required to establish future treatments. CLINICAL RELEVANCE DNA- and RNA-based screening systems may be useful for detecting tyrosine kinase fusion genes in specific fusion-negative sarcomas and identifying key therapeutic targets, leading to possible breakthroughs in the treatment of bone and soft tissue sarcomas. Given that current DNA sequencing misses fusion genes, RNA-based screening systems should be widely considered as a worldwide test for sarcoma. If standard treatments such as chemotherapy are not effective, or even if the sarcoma is of bone, RNA sequencing should be considered to identify as many therapeutic targets as possible.
Collapse
Affiliation(s)
- Nobuhiko Hasegawa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hidetaka Niizuma
- Department of Pediatrics, Tohoku University School of Medicine, Miyagi, Japan
| | - Kazutaka Kikuta
- Division of Musculoskeletal Oncology and Orthopaedic Surgery, Tochigi Cancer Center, Tochigi, Japan
| | - Jungo Imanishi
- Department of Orthopaedic Surgery, Teikyo University School of Medicine, Tokyo, Japan
- Department of Orthopaedic Oncology and Surgery, Saitama Medical University International Medical Center, Saitama, Japan
| | - Makoto Endo
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Keita Sasa
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kei Sano
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kaoru Hirabayashi
- Division of Diagnostic Pathology, Tochigi Cancer Center, Tochigi, Japan
| | - Tatsuya Takagi
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shunsuke Kato
- Department of Clinical Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
- Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Al-Ghabkari A, Huang B, Park M. Aberrant MET Receptor Tyrosine Kinase Signaling in Glioblastoma: Targeted Therapy and Future Directions. Cells 2024; 13:218. [PMID: 38334610 PMCID: PMC10854665 DOI: 10.3390/cells13030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 02/10/2024] Open
Abstract
Brain tumors represent a heterogeneous group of neoplasms characterized by a high degree of aggressiveness and a poor prognosis. Despite recent therapeutic advances, the treatment of brain tumors, including glioblastoma (GBM), an aggressive primary brain tumor associated with poor prognosis and resistance to therapy, remains a significant challenge. Receptor tyrosine kinases (RTKs) are critical during development and in adulthood. Dysregulation of RTKs through activating mutations and gene amplification contributes to many human cancers and provides attractive therapeutic targets for treatment. Under physiological conditions, the Met RTK, the hepatocyte growth factor/scatter factor (HGF/SF) receptor, promotes fundamental signaling cascades that modulate epithelial-to-mesenchymal transition (EMT) involved in tissue repair and embryogenesis. In cancer, increased Met activity promotes tumor growth and metastasis by providing signals for proliferation, survival, and migration/invasion. Recent clinical genomic studies have unveiled multiple mechanisms by which MET is genetically altered in GBM, including focal amplification, chromosomal rearrangements generating gene fusions, and a splicing variant mutation (exon 14 skipping, METex14del). Notably, MET overexpression contributes to chemotherapy resistance in GBM by promoting the survival of cancer stem-like cells. This is linked to distinctive Met-induced pathways, such as the upregulation of DNA repair mechanisms, which can protect tumor cells from the cytotoxic effects of chemotherapy. The development of MET-targeted therapies represents a major step forward in the treatment of brain tumours. Preclinical studies have shown that MET-targeted therapies (monoclonal antibodies or small molecule inhibitors) can suppress growth and invasion, enhancing the efficacy of conventional therapies. Early-phase clinical trials have demonstrated promising results with MET-targeted therapies in improving overall survival for patients with recurrent GBM. However, challenges remain, including the need for patient stratification, the optimization of treatment regimens, and the identification of mechanisms of resistance. This review aims to highlight the current understanding of mechanisms underlying MET dysregulation in GBM. In addition, it will focus on the ongoing preclinical and clinical assessment of therapies targeting MET dysregulation in GBM.
Collapse
Affiliation(s)
- Abdulhameed Al-Ghabkari
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
| | - Bruce Huang
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Morag Park
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; (A.A.-G.); (B.H.)
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
- Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Altintas DM, Comoglio PM. An Observatory for the MET Oncogene: A Guide for Targeted Therapies. Cancers (Basel) 2023; 15:4672. [PMID: 37760640 PMCID: PMC10526818 DOI: 10.3390/cancers15184672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.
Collapse
Affiliation(s)
| | - Paolo M. Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, 20139 Milano, Italy;
| |
Collapse
|
6
|
Papadimitriou E, Kanellopoulou VK. Protein Tyrosine Phosphatase Receptor Zeta 1 as a Potential Target in Cancer Therapy and Diagnosis. Int J Mol Sci 2023; 24:ijms24098093. [PMID: 37175798 PMCID: PMC10178973 DOI: 10.3390/ijms24098093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.
Collapse
Affiliation(s)
- Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Vasiliki K Kanellopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
7
|
Yang S, Huan R, Yue J, Guo J, Deng M, Wang L, Peng S, Lin X, Liu L, Wang J, Han G, Zha Y, Liu J, Zhang J, Tan Y. Multiomics integration reveals the effect of Orexin A on glioblastoma. Front Pharmacol 2023; 14:1096159. [PMID: 36744263 PMCID: PMC9894894 DOI: 10.3389/fphar.2023.1096159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Objectives: This study involved a multi-omics analysis of glioblastoma (GBM) samples to elaborate the potential mechanism of drug treatment. Methods: The GBM cells treated with or without orexin A were acquired from sequencing analysis. Differentially expressed genes/proteins/metabolites (DEGs/ DEPs/ DEMs) were screened. Next, combination analyses were conducted to investigate the common pathways and correlations between the two groups. Lastly, transcriptome-proteome-metabolome association analysis was carried out to determine the common pathways, and the genes in these pathways were analyzed through Kaplan-Meier (K-M) survival analysis in public databases. Cell and animal experiments were performed to investigate the anti-glioma activity of orexin A. Results: A total of 1,527 DEGs, 52 DEPs, and 153 DEMs were found. Moreover, the combination analyses revealed that 6, 4, and 1 common pathways were present in the transcriptome-proteome, proteome-metabolome, and transcriptome-metabolome, respectively. Certain correlations were observed between the two data sets. Finally, 11 common pathways were discovered in association analysis, and 138 common genes were screened out in these common pathways. Six genes showed significant differences in terms of survival in both TCGA and CGGA. In addition, orexin A inhibited the proliferation, migration, and invasion of glioma in vitro and in vivo. Conclusion: Eleven common KEGG pathways with six common genes were found among different omics participations, revealing the underlying mechanisms in different omics and providing theoretical basis and reference for multi-omics research on drug treatment.
Collapse
Affiliation(s)
- Sha Yang
- Guizhou University Medical College, Guiyang, Guizhou Province, China
| | - Renzheng Huan
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jin Guo
- Guizhou University Medical College, Guiyang, Guizhou Province, China
| | - Mei Deng
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Liya Wang
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuo Peng
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jia Wang
- Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jian Liu
- Guizhou University Medical College, Guiyang, Guizhou Province, China,Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jian Liu, ; Jiqin Zhang, ; Ying Tan,
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jian Liu, ; Jiqin Zhang, ; Ying Tan,
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People’s Hospital, Guiyang, China,*Correspondence: Jian Liu, ; Jiqin Zhang, ; Ying Tan,
| |
Collapse
|
8
|
Identification of EWSR1 rearrangements in patients with immature hematopoietic neoplasms: A case series and review of literature. Ann Diagn Pathol 2022; 58:151942. [PMID: 35344861 DOI: 10.1016/j.anndiagpath.2022.151942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/20/2022]
Abstract
Rearrangement of the EWSR1 gene (22q12.2) is a well-recognized genetic lesion in bone and soft tissue tumors. However, few reports have suggested that EWSR1 rearrangements may also occur in the setting of hematopoietic tumors. We herein describe two cases of immature hematopoietic neoplasms presenting with EWSR1 rearrangements. The first occurred in a 41-year-old female diagnosed with mixed-phenotype acute leukemia, B/T/myeloid, in which conventional chromosome analysis revealed a t(2;22)(q35;q12). Further analysis with whole genome sequencing revealed that this rearrangement led to an EWSR1::FEV gene fusion. The second case was identified in an 18-year-old male with a high-grade B-cell lineage malignant neoplasm with immature features in which conventional chromosome analysis revealed a t(17;22)(q25;q12). Mate-pair sequencing, a next generation sequencing-based assay, was performed and revealed three in-frame chimeric gene fusions involving the EWSR1, TEF and STRADA gene regions. This report further expands the repertoire of hematopoietic neoplasms with EWSR1 fusions and partner genes involved in these rearrangements.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Glioma represents of variety of brain malignancies, the majority of which confer a poor prognosis despite treatment. With the widespread use of next-generation sequencing, gene fusions are being found in greater numbers. Gene fusions in glioma represent an opportunity to deliver targeted therapies to those with limited options for treatment. RECENT FINDINGS Extensive studies on these gene fusions have shown that they can exhibit distinct phenotypes, such as PTPRZ1-MET fusions in secondary glioblastoma or FGFR3-TACC3 fusions in IDH wildtype gliomas. Responses have been observed with the use of targeted therapies but some have been short lived because of the development of treatment resistance. SUMMARY Increasing detection of gene fusions in glioma along with basket trials have helped define different fusion phenotypes and paved the way for targeted kinase inhibitor-based therapies. Targeting NTRK fusions has been the most successful fusion-guided therapy to date and evaluating all patients for these fusions may be warranted.
Collapse
Affiliation(s)
- Peter L Kim
- Yale Brain Tumor Center, Yale Cancer Center and Department of Neurology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|