1
|
Hu B, Zhang J, Huang J, Luo B, Zeng X, Jia J. NLRP3/1-mediated pyroptosis: beneficial clues for the development of novel therapies for Alzheimer's disease. Neural Regen Res 2024; 19:2400-2410. [PMID: 38526276 PMCID: PMC11090449 DOI: 10.4103/1673-5374.391311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/06/2023] [Accepted: 11/14/2023] [Indexed: 03/26/2024] Open
Abstract
The inflammasome is a multiprotein complex involved in innate immunity that mediates the inflammatory response leading to pyroptosis, which is a lytic, inflammatory form of cell death. There is accumulating evidence that nucleotide-binding domain and leucine-rich repeat pyrin domain containing 3 (NLRP3) inflammasome-mediated microglial pyroptosis and NLRP1 inflammasome-mediated neuronal pyroptosis in the brain are closely associated with the pathogenesis of Alzheimer's disease. In this review, we summarize the possible pathogenic mechanisms of Alzheimer's disease, focusing on neuroinflammation. We also describe the structures of NLRP3 and NLRP1 and the role their activation plays in Alzheimer's disease. Finally, we examine the neuroprotective activity of small-molecule inhibitors, endogenous inhibitor proteins, microRNAs, and natural bioactive molecules that target NLRP3 and NLRP1, based on the rationale that inhibiting NLRP3 and NLRP1 inflammasome-mediated pyroptosis can be an effective therapeutic strategy for Alzheimer's disease.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Municipal Key-Innovative Discipline of Molecular Diagnostics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, Zhejiang Province, China
| | - Jiaping Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing, Zhejiang Province, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, Zhejiang Province, China
| |
Collapse
|
2
|
Xu C, Jiang C, Li Z, Gao H, Xian J, Guo W, He D, Peng X, Zhou D, Li D. Exosome nanovesicles: biomarkers and new strategies for treatment of human diseases. MedComm (Beijing) 2024; 5:e660. [PMID: 39015555 PMCID: PMC11247338 DOI: 10.1002/mco2.660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024] Open
Abstract
Exosomes are nanoscale vesicles of cellular origin. One of the main characteristics of exosomes is their ability to carry a wide range of biomolecules from their parental cells, which are important mediators of intercellular communication and play an important role in physiological and pathological processes. Exosomes have the advantages of biocompatibility, low immunogenicity, and wide biodistribution. As researchers' understanding of exosomes has increased, various strategies have been proposed for their use in diagnosing and treating diseases. Here, we provide an overview of the biogenesis and composition of exosomes, describe the relationship between exosomes and disease progression, and focus on the use of exosomes as biomarkers for early screening, disease monitoring, and guiding therapy in refractory diseases such as tumors and neurodegenerative diseases. We also summarize the current applications of exosomes, especially engineered exosomes, for efficient drug delivery, targeted therapies, gene therapies, and immune vaccines. Finally, the current challenges and potential research directions for the clinical application of exosomes are also discussed. In conclusion, exosomes, as an emerging molecule that can be used in the diagnosis and treatment of diseases, combined with multidisciplinary innovative solutions, will play an important role in clinical applications.
Collapse
Affiliation(s)
- Chuan Xu
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Chaoyang Jiang
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Zhihui Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Hui Gao
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Jing Xian
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Wenyan Guo
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dan He
- Department of OncologyThe Second Affiliated Hospital of Chengdu Medical CollegeChina National Nuclear Corporation 416 HospitalChengduSichuanChina
| | - Xingchen Peng
- Department of BiotherapyCancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Daijun Zhou
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| | - Dong Li
- Department of OncologyThe General Hospital of Western Theater CommandChengduChina
| |
Collapse
|
3
|
Sciaccotta R, Murdaca G, Caserta S, Rizzo V, Gangemi S, Allegra A. Circular RNAs: A New Approach to Multiple Sclerosis. Biomedicines 2023; 11:2883. [PMID: 38001884 PMCID: PMC10669154 DOI: 10.3390/biomedicines11112883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple sclerosis, a condition characterised by demyelination and axonal damage in the central nervous system, is due to autoreactive immune cells that recognise myelin antigens. Alteration of the immune balance can promote the onset of immune deficiencies, loss of immunosurveillance, and/or development of autoimmune disorders such as MS. Numerous enzymes, transcription factors, signal transducers, and membrane proteins contribute to the control of immune system activity. The "transcriptional machine" of eukaryotic cells is a complex system composed not only of mRNA but also of non-coding elements grouped together in the set of non-coding RNAs. Recent studies demonstrate that ncRNAs play a crucial role in numerous cellular functions, gene expression, and the pathogenesis of many immune disorders. The main purpose of this review is to investigate the role of circular RNAs, a previously unknown class of non-coding RNAs, in MS's pathogenesis. CircRNAs influence post-transcriptional control, expression, and functionality of a microRNA and epigenetic factors, promoting the development of typical MS abnormalities such as neuroinflammation, damage to neuronal cells, and microglial dysfunction. The increase in our knowledge of the role of circRNAs in multiple sclerosis could, in the future, modify the common diagnostic-therapeutic criteria, paving the way to a new vision of this neuroimmune pathology.
Collapse
Affiliation(s)
- Raffaele Sciaccotta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (S.C.); (A.A.)
| | - Giuseppe Murdaca
- Department of Internal Medicine, University of Genova, Viale Benedetto XV, 16132 Genova, Italy
- IRCCS Ospedale Policlinico S. Martino, 16132 Genova, Italy
| | - Santino Caserta
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (S.C.); (A.A.)
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Alessandro Allegra
- Hematology Unit, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, Via Consolare Valeria, 98125 Messina, Italy; (R.S.); (S.C.); (A.A.)
| |
Collapse
|
4
|
Si Q, Wu L, Pang D, Jiang P. Exosomes in brain diseases: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e287. [PMID: 37313330 PMCID: PMC10258444 DOI: 10.1002/mco2.287] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/15/2023] Open
Abstract
Exosomes are extracellular vesicles with diameters of about 100 nm that are naturally secreted by cells into body fluids. They are derived from endosomes and are wrapped in lipid membranes. Exosomes are involved in intracellular metabolism and intercellular communication. They contain nucleic acids, proteins, lipids, and metabolites from the cell microenvironment and cytoplasm. The contents of exosomes can reflect their cells' origin and allow the observation of tissue changes and cell states under disease conditions. Naturally derived exosomes have specific biomolecules that act as the "fingerprint" of the parent cells, and the contents changed under pathological conditions can be used as biomarkers for disease diagnosis. Exosomes have low immunogenicity, are small in size, and can cross the blood-brain barrier. These characteristics make exosomes unique as engineering carriers. They can incorporate therapeutic drugs and achieve targeted drug delivery. Exosomes as carriers for targeted disease therapy are still in their infancy, but exosome engineering provides a new perspective for cell-free disease therapy. This review discussed exosomes and their relationship with the occurrence and treatment of some neuropsychiatric diseases. In addition, future applications of exosomes in the diagnosis and treatment of neuropsychiatric disorders were evaluated in this review.
Collapse
Affiliation(s)
- Qingying Si
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Linlin Wu
- Department of OncologyTengzhou Central People's HospitalTengzhouChina
| | - Deshui Pang
- Department of EndocrinologyTengzhou Central People's HospitalTengzhouChina
| | - Pei Jiang
- Translational Pharmaceutical LaboratoryJining First People's HospitalShandong First Medical UniversityJiningChina
- Institute of Translational PharmacyJining Medical Research AcademyJiningChina
| |
Collapse
|
5
|
Abdelsalam M, Ahmed M, Osaid Z, Hamoudi R, Harati R. Insights into Exosome Transport through the Blood-Brain Barrier and the Potential Therapeutical Applications in Brain Diseases. Pharmaceuticals (Basel) 2023; 16:571. [PMID: 37111328 PMCID: PMC10144189 DOI: 10.3390/ph16040571] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Drug delivery to the central nervous system (CNS) is limited due to the presence of the blood-brain barrier (BBB), a selective physiological barrier located at the brain microvessels that regulates the flow of cells, molecules and ions between the blood and the brain. Exosomes are nanosized extracellular vesicles expressed by all cell types and that function as cargos, allowing for communication between the cells. The exosomes were shown to cross or regulate the BBB in healthy and disease conditions. However, the mechanistic pathways by which exosomes cross the BBB have not been fully elucidated yet. In this review, we explore the transport mechanisms of exosomes through the BBB. A large body of evidence suggests that exosome transport through the BBB occurs primarily through transcytosis. The transcytosis mechanisms are influenced by several regulators. Inflammation and metastasis also enhance exosome trafficking across the BBB. We also shed light on the therapeutical applications of exosomes for treating brain diseases. Further investigations are essential to provide clearer insights related to trafficking of exosomes across the BBB and disease treatment.
Collapse
Affiliation(s)
- Manal Abdelsalam
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Munazza Ahmed
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (M.A.); (M.A.); (Z.O.)
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
6
|
Li X, Zhu Y, Wang Y, Xia X, Zheng JC. Neural stem/progenitor cell-derived extracellular vesicles: A novel therapy for neurological diseases and beyond. MedComm (Beijing) 2023; 4:e214. [PMID: 36776763 PMCID: PMC9905070 DOI: 10.1002/mco2.214] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
As bilayer lipid membrane vesicles secreted by neural stem/progenitor cells (NSCs), NSC-derived extracellular vesicles (NSC-EVs) have attracted growing attention for their promising potential to serve as novel therapeutic agents in treatment of neurological diseases due to their unique physicochemical characteristics and biological functions. NSC-EVs exhibit advantages such as stable physical and chemical properties, low immunogenicity, and high penetration capacity to cross blood-brain barrier to avoid predicaments of the clinical applications of NSCs that include autoimmune responses, ethical/religious concerns, and the problematic logistics of acquiring fetal tissues. More importantly, NSC-EVs inherit excellent neuroprotective and neuroregenerative potential and immunomodulatory capabilities from parent cells, and display outstanding therapeutic effects on mitigating behavioral alterations and pathological phenotypes of patients or animals with neurological diseases. In this review, we first comprehensively summarize the progress in functional research and application of NSC-EVs in different neurological diseases, including neurodegenerative diseases, acute neurological diseases, dementia/cognitive dysfunction, and peripheral diseases. Next, we provide our thoughts on current limitations/concerns as well as tremendous potential of NSC-EVs in clinical applications. Last, we discuss future directions of further investigations on NSC-EVs and their probable applications in both basic and clinical research.
Collapse
Affiliation(s)
- Xiangyu Li
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yingbo Zhu
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
| | - Yi Wang
- Center for Translational Neurodegeneration and Regenerative TherapyYangzhi Rehabilitation Hospital, Tongji UniversityShanghaiChina
| | - Xiaohuan Xia
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| | - Jialin C. Zheng
- Center for Translational Neurodegeneration and Regenerative TherapyTongji Hospital, Tongji University School of MedicineShanghaiChina
- Shanghai Frontiers Science Center of Nanocatalytic MedicineTongji University School of MedicineShanghaiChina
- Translational Research Institute of Brain and Brain‐Like IntelligenceShanghai Fourth People's Hospital, Tongji University School of MedicineShanghaiChina
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Tongji UniversityMinistry of EducationShanghaiChina
| |
Collapse
|
7
|
Wang ZY, Wen ZJ, Xu HM, Zhang Y, Zhang YF. Exosomal noncoding RNAs in central nervous system diseases: biological functions and potential clinical applications. Front Mol Neurosci 2022; 15:1004221. [PMID: 36438184 PMCID: PMC9681831 DOI: 10.3389/fnmol.2022.1004221] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/18/2022] [Indexed: 09/26/2023] Open
Abstract
Central nervous system (CNS) disease is a general term for a series of complex and diverse diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), CNS tumors, stroke, epilepsy, and amyotrophic lateral sclerosis (ALS). Interneuron and neuron-glia cells communicate with each other through their homeostatic microenvironment. Exosomes in the microenvironment have crucial impacts on interneuron and neuron-glia cells by transferring their contents, such as proteins, lipids, and ncRNAs, constituting a novel form of cell-to-cell interaction and communication. Exosomal noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and PIWI-interacting RNAs (piRNAs), regulate physiological functions and maintain CNS homeostasis. Exosomes are regarded as extracellular messengers that transfer ncRNAs between neurons and body fluids due to their ability to cross the blood-brain barrier. This review aims to summarize the current understanding of exosomal ncRNAs in CNS diseases, including prospective diagnostic biomarkers, pathological regulators, therapeutic strategies and clinical applications. We also provide an all-sided discussion of the comparison with some similar CNS diseases and the main limitations and challenges for exosomal ncRNAs in clinical applications.
Collapse
Affiliation(s)
- Zhong-Yu Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Zeng-Jin Wen
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, China
- The Key Laboratory of Environmental Factors and Chronic Disease Control of Ningxia, Ningxia Medical University, Yinchuan, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Chen S, Polaki V, Bihl JC, Wang J. Compromised endothelial progenitor cell exosomal communication with endothelial cells in hypertension ischemia conditions. FRONTIERS IN STROKE 2022; 1:1015463. [PMID: 39450345 PMCID: PMC11500974 DOI: 10.3389/fstro.2022.1015463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
We have previously demonstrated that endothelial progenitor cell (EPC) derived exosomes (EPC-EXs) can protect endothelial cells (ECs) against hypoxia injury. Given that EX function varies upon the cellular status and EPC function is declined in hypertension, we speculate the function of EPC-EXs is altered in hypertension-ischemia conditions. Here, we studied the EPC-EX mediated communications of EPCs with ECs in hypertension-ischemia conditions. EPC-EXs were prepared from the bone marrow EPCs of wild-type (WT) and hypertensive renin transgene (R+) mice (WT-EPC-EXs and R-EPC-EXs, respectively). To mimic hypertension-ischemia injury, ECs were challenged with angiotensin II (Ang II; 10-6 M) plus hypoxia (1% O2 for 6 h) and reoxygenation (21% O2 for 24 h). To determine the function of EPC-EXs, ECs were co-cultured with EXs during the reoxygenation period. EX uptake effciency, EC viability, and angiogenic function were assessed. We found that: (1) The incorporation effciency of R-EPC-EXs by ECs was significantly decreased compared to the WT-EPC-EXs. (2) Ang II plus hypoxia reoxygenation-injured ECs displayed decreased cell viability, increased cell apoptosis, and compromised angiogenic ability, which were alleviated by R-EPC-EXs. (3) WT-EPC-EXs elicited better effects than R-EPC-EXs on protecting ECs from hypertension plus hypoxia injury. In conclusion, our data have demonstrated that EPC-EXs mediated communication of EPCs and ECs is compromised in hypertension-ischemia conditions, suggesting that impairment of EPC exosomal communication might contribute to the exaggerated cerebral ischemia injury in hypertension-associated ischemic stroke.
Collapse
Affiliation(s)
- Shuzhen Chen
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Venkata Polaki
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Ji C. Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Jinju Wang
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| |
Collapse
|
9
|
Mattingly J, Li Y, Bihl JC, Wang J. The promise of exosome applications in treating central nervous system diseases. CNS Neurosci Ther 2021; 27:1437-1445. [PMID: 34636491 PMCID: PMC8611778 DOI: 10.1111/cns.13743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomes (EXs), a type of extracellular vesicles, are secreted from virtually all types of cells. EXs serve as cell-to-cell communicators by conveying proteins and nucleic acids with regulatory functions. Increasing evidence shows that EXs are implicated in the pathogenesis of central nervous system (CNS) diseases. Moreover, EXs have recently been highlighted as a new promising therapeutic strategy for in vivo delivery of nucleotides and drugs. Studies have revealed that infusion of EXs elicits beneficial effects on the CNS injury animal models. As compared to cell-based therapy, EXs-based therapy for CNS diseases has unique advantages, opening a new path for neurological medicine. In this review, we summarized the current state of knowledge of EXs, the roles and applications of EXs as a viable pathological biomarker, and EX-based therapy for CNS diseases.
Collapse
Affiliation(s)
- Jared Mattingly
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Yuchen Li
- Department of Pharmacology and ToxicologyBoonshoft School of MedicineWright State UniversityDaytonOhioUSA
| | - Ji C. Bihl
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| | - Jinju Wang
- Department of Biomedical SciencesJoan C. Edwards School of MedicineMarshall UniversityHuntingtonWest VirginiaUSA
| |
Collapse
|