1
|
Xia Y, Wang X, Sheng J, Hua L, Dai Z, Sun H, Han Y, Yao Z, Lu Q. Response inhibition related neural oscillatory patterns show reliable early identification of bipolar from unipolar depression in a Go/No-Go task. J Affect Disord 2024; 351:414-424. [PMID: 38272369 DOI: 10.1016/j.jad.2024.01.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/30/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Response inhibition is a key neurocognitive factor contributing to impulsivity in mood disorders. Here, we explored the common and differential alterations of neural circuits associated with response inhibition in bipolar disorder (BD) and unipolar disorder (UD) and whether the oscillatory signatures can be used as early biomarkers in BD. METHODS 39 patients with BD, 36 patients with UD, 29 patients initially diagnosed with UD who later underwent diagnostic conversion to BD, and 36 healthy controls performed a Go/No-Go task during MEG scanning. We carried out time-frequency and connectivity analysis on MEG data. Further, we performed machine learning using oscillatory features as input to identify bipolar from unipolar depression at the early clinical stage. RESULTS Compared to healthy controls, patients had reduced rIFG-to-pre-SMA connectivity and delayed activity of rIFG. Among patients, lower beta power and higher peak frequency were observed in BD patients than in UD patients. These changes enabled accurate classification between BD and UD with an accuracy of approximately 80 %. CONCLUSIONS The inefficiency of the prefrontal control network is a shared mechanism in mood disorders, while the abnormal activity of rIFG is more specific to BD. Neuronal responses during response inhibition could serve as a diagnostic biomarker for BD in early stage.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junling Sheng
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Yinglin Han
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
Xia Y, Wang X, You W, Hua L, Dai Z, Tang H, Yan R, Yao Z, Lu Q. Impulsivity and neural correlates of response inhibition in bipolar disorder and their unaffected relatives: A MEG study. J Affect Disord 2024; 351:430-441. [PMID: 38246283 DOI: 10.1016/j.jad.2024.01.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
BACKGROUND Response inhibition is a core cognitive impairment in bipolar disorder (BD), leading to increased impulsivity in BD. However, the relationship between the neural mechanisms underlying impaired response inhibition and impulsivity in BD is not yet clear. Individuals who are genetically predisposed to BD give a way of identifying potential endophenotypes. METHODS A total of 97 participants, including 39 patients with BD, 22 unaffected relatives (UR) of patients with BD, and 36 healthy controls performed a Go/No-Go task during magnetoencephalography. We carried out time-frequency and connectivity analysis on MEG data. RESULTS Decreased beta power, prolonged latency and increased peak frequency in rIFG, decreased beta power in pre-SMA and reduced rIFG-to-pre-SMA connectivity were found in BD relative to healthy controls. In the UR group, we found a decrease in the beta power of pre-SMA and prolonged latency of rIFG. Furthermore, increased motor impulsiveness in BD was related to abnormal alterations in beta oscillatory activity of rIFG and functional connectivity between rIFG and pre-SMA. CONCLUSIONS Hypoactivity activity in rIFG and impaired dominant role of rIFG in the prefrontal control network may underlie the neuropathology of response inhibition dysfunction, resulting increased motor impulsivity in BD. Our findings point to measuring rIFG dysfunction as a potential means of identifying individuals at genetic high risk for transition to BD disease expression.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei You
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hao Tang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - ZhiJian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Du Y, Hua L, Tian S, Dai Z, Xia Y, Zhao S, Zou H, Wang X, Sun H, Zhou H, Huang Y, Yao Z, Lu Q. Altered beta band spatial-temporal interactions during negative emotional processing in major depressive disorder: An MEG study. J Affect Disord 2023; 338:254-261. [PMID: 37271293 DOI: 10.1016/j.jad.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The mood-concordance bias is a key feature of major depressive disorder (MDD), but the spatiotemporal neural activity associated with emotional processing in MDD remains unclear. Understanding the dysregulated connectivity patterns during emotional processing and their relationship with clinical symptoms could provide insights into MDD neuropathology. METHODS We enrolled 108 MDD patients and 64 healthy controls (HCs) who performed an emotion recognition task during magnetoencephalography recording. Network-based statistics (NBS) was used to analyze whole-brain functional connectivity (FC) across different frequency ranges during distinct temporal periods. The relationship between the aberrant FC and affective symptoms was explored. RESULTS MDD patients exhibited decreased FC strength in the beta band (13-30 Hz) compared to HCs. During the early stage of emotional processing (0-100 ms), reduced FC was observed between the left parahippocampal gyrus and the left cuneus. In the late stage (250-400 ms), aberrant FC was primarily found in the cortex-limbic-striatum systems. Moreover, the FC strength between the right fusiform gyrus and left thalamus, and between the left calcarine fissure and left inferior temporal gyrus were negatively associated with Hamilton Depression Rating Scale (HAMD) scores. LIMITATIONS Medication information was not involved. CONCLUSION MDD patients exhibited abnormal temporal-spatial neural interactions in the beta band, ranging from early sensory to later cognitive processing stages. These aberrant interactions involve the cortex-limbic-striatum circuit. Notably, aberrant FC in may serve as a potential biomarker for assessing depression severity.
Collapse
Affiliation(s)
- Yishan Du
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shui Tian
- Department of Radiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - ZhongPeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yi Xia
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Shuai Zhao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - HaoWen Zou
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Xiaoqin Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Hongliang Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - YingHong Huang
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - ZhiJian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
4
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Gamma band VMPFC-PreCG.L connection variation after the onset of negative emotional stimuli can predict mania in depressive patients. J Psychiatr Res 2023; 158:165-171. [PMID: 36586215 DOI: 10.1016/j.jpsychires.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/27/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Because of the similar clinical symptoms, it is difficult to distinguish unipolar disorder (UD) from bipolar disorder (BD) in the depressive episode using the available clinical features, especially for those who meet the diagnostic criteria of UD, however, experience the manic episode during the follow-up (tBD). METHODS Magnetoencephalography recordings during a sad expression recognition task were obtained from 81 patients (27 BD, 24 tBD, 30 UD) and 26 healthy controls (HCs). Source analysis was applied to localize 64 regions of interest in the low gamma band (30-50 Hz). Regional functional connections (FCs) were constructed respectively within three time periods (early: 0-200 ms, middle: 200-400 ms, and post: 400-600 ms). The network-based statistic method was used to explore the abnormal connection patterns in tBD compared to UD and HC. BD was applied to explore whether such abnormality is still significant between every two groups of BD, tBD, UD, and HC. RESULTS The VMPFC-PreCG.L connection was found to be a significantly different connection between tBD and UD in the early time period and between tBD and BD in the middle time period. Furthermore, the middle/early time period ratio of FC value of VMPFC-PreCG.L connection was negatively correlated with the bipolarity index in tBD. CONCLUSIONS The VMPFC-PreCG.L connection in different time periods after the onset of sad facial stimuli may be a potential biomarker to distinguish the different states of BD. The FC ratio of VMPFC-PreCG.L connection may predict whether patients with depressive episodes subsequently develop mania.
Collapse
|