1
|
Zhi J, Zhang S, Huang M, Qin H, Xu H, Chang Q, Wang Y. Transcutaneous auricular vagus nerve stimulation as a potential therapy for attention deficit hyperactivity disorder: modulation of the noradrenergic pathway in the prefrontal lobe. Front Neurosci 2024; 18:1494272. [PMID: 39697776 PMCID: PMC11652481 DOI: 10.3389/fnins.2024.1494272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by developmental impairments, inattention, motor hyperactivity, and impulsivity. Currently, there is no effective intervention that can completely cure it. One of the pathogenic mechanisms of ADHD involves abnormalities in the norepinephrine (NE) pathway within the prefrontal cortex (PFC). In recent years, transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive neuromodulation technique, has demonstrated promising potential in the treatment of neurological and psychiatric disorders. However, its application in the management of ADHD remains relatively unexplored. Previous studies have shown that taVNS exerts therapeutic effects on attention, cognition, arousal, perception, and behavioral regulation primarily through activating the vagus nerve conduction pathway, specifically targeting the nucleus tractus solitarius - locus coeruleus - NE pathway. These findings have led to the hypothesis that taVNS may be an effective intervention for ADHD, with NE and its pathway playing a pivotal role in this context. Therefore, this review comprehensively examines the correlation between NE pathway alterations in the PFC and ADHD, the mechanism of action of taVNS, and the potential role of the NE pathway in treating ADHD with taVNS, aiming to provide a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Jincao Zhi
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shiwen Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Meiling Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Huan Qin
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - He Xu
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qing Chang
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yan Wang
- Rehabilitation Center, The Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Gerges ANH, Williams EER, Hillier S, Uy J, Hamilton T, Chamberlain S, Hordacre B. Clinical application of transcutaneous auricular vagus nerve stimulation: a scoping review. Disabil Rehabil 2024; 46:5730-5760. [PMID: 38362860 DOI: 10.1080/09638288.2024.2313123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Transcutaneous auricular vagus nerve stimulation (taVNS) is an emerging non-invasive neuromodulation therapy. This study aimed to explore the therapeutic use of taVNS, optimal stimulation parameters, effective sham protocols, and safety. METHODS A scoping review was conducted. Five databases and grey literature were searched. The data extracted included stimulation parameters, adverse events (AEs), and therapeutic effects on clinical outcomes. RESULTS 109 studies were included. taVNS was used across 21 different clinical populations, most commonly in psychiatric, cardiac, and neurological disorders. Overall, 2,214 adults received active taVNS and 1,017 received sham taVNS. Reporting of stimulation parameters was limited and inconsistent. taVNS appeared to have a favourable therapeutic effect across a wide range of clinical populations with varied parameters. Three sham protocols were reported but their effectiveness was documented in only two of the 54 sham-controlled studies. Most reported adverse events were localised to stimulation site. CONCLUSION There is growing evidence for taVNS therapeutic effect. taVNS appears safe and tolerable. Sham protocols need evaluation. Standardised and comprehensive reporting of both stimulation parameters and adverse events is required. Two different questionnaires have been proposed to evaluate adverse events and the effectiveness of sham methods in blinding participants.
Collapse
Affiliation(s)
- Ashraf N H Gerges
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Ellen E R Williams
- School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
| | - Susan Hillier
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Jeric Uy
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Taya Hamilton
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Fourier Intelligence International Pte Ltd., Global Headquarters, Singapore, Singapore
| | - Saran Chamberlain
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| | - Brenton Hordacre
- Innovation, Implementation and Clinical Translation (IIMPACT) in Health, Allied Health and Human Performance, University of South Australia, Adelaide, Australia
| |
Collapse
|
3
|
Yu Y, Yao R, Liu Z, Lu Y, Zhu Y, Cao J. Feasibility and effectiveness of transcutaneous auricular vagus nerve stimulation (taVNS) in awake mice. CNS Neurosci Ther 2024; 30:e70043. [PMID: 39258798 PMCID: PMC11388527 DOI: 10.1111/cns.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
AIMS Transcutaneous auricular vagus nerve stimulation (taVNS) is widely used to treat a variety of disorders because it is noninvasive, safe, and well tolerated by awake patients. However, long-term and repetitive taVNS is difficult to achieve in awake mice. Therefore, developing a new taVNS method that fully mimics the method used in clinical settings and is well-tolerated by awake mice is greatly important for generalizing research findings related to the effects of taVNS. The study aimed to develop a new taVNS device for use in awake mice and to test its reliability and effectiveness. METHODS We demonstrated the reliability of this taVNS device through retrograde neurotropic pseudorabies virus (PRV) tracing and evaluated its effectiveness through morphological analysis. After 3 weeks of taVNS application, the open field test (OFT) and elevated plus maze (EPM) were used to evaluate anxiety-like behaviors, and the Y-maze test and novel object recognition test (NORT) were used to evaluate recognition memory behaviors, respectively. RESULTS We found that repetitive taVNS was well tolerated by awake mice, had no effect on anxiety-like behaviors, and significantly improved memory. CONCLUSION Our findings suggest that this new taVNS device for repetitive stimulation of awake mice is safe, tolerable, and effective.
Collapse
Affiliation(s)
- Yu‐Mei Yu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Rui Yao
- Department of AnesthesiologyXuzhou First People's HospitalXuzhouJiangsuChina
| | - Zhou‐Liang Liu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yao Lu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
| | - Yang‐Zi Zhu
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyXuzhou Central HospitalXuzhouJiangsuChina
| | - Jun‐Li Cao
- Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhou Medical UniversityXuzhouJiangsuChina
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouJiangsuChina
- Department of AnesthesiologyAffiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
4
|
Bömmer T, Schmidt LM, Meier K, Kricheldorff J, Stecher H, Herrmann CS, Thiel CM, Janitzky K, Witt K. Impact of Stimulation Duration in taVNS-Exploring Multiple Physiological and Cognitive Outcomes. Brain Sci 2024; 14:875. [PMID: 39335371 PMCID: PMC11430400 DOI: 10.3390/brainsci14090875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a non-invasive neuromodulation technique that modulates the noradrenergic activity of the locus coeruleus (LC). Yet, there is still uncertainty about the most effective stimulation and reliable outcome parameters. In a double blind, sham-controlled study including a sample of healthy young individuals (N = 29), we compared a shorter (3.4 s) and a longer (30 s) stimulation duration and investigated the effects of taVNS (real vs. sham) on saliva samples (alpha amylase and cortisol concentration), pupil (pupillary light reflex and pupil size at rest) and EEG data (alpha and theta activity at rest, ERPs for No-Go signals), and cognitive tasks (Go/No-Go and Stop Signal Tasks). Salivary alpha amylase concentration was significantly increased in the real as compared to sham stimulation for the 30 s stimulation condition. In the 3.4 s stimulation condition, we found prolonged reaction times and increased error rates in the Go/No-Go task and increased maximum acceleration in the pupillary light reflex. For the other outcomes, no significant differences were found. Our results show that prolonged stimulation increases salivary alpha-amylase, which was expected from the functional properties of the LC. The finding of longer response times to short taVNS stimulation was not expected and cannot be explained by an increase in LC activity. We also discuss the difficulties in assessing pupil size as an expression of taVNS-mediated LC functional changes.
Collapse
Affiliation(s)
- Till Bömmer
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Luisa M Schmidt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Katharina Meier
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Julius Kricheldorff
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
| | - Heiko Stecher
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christoph S Herrmann
- Experimental Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Christiane M Thiel
- Biological Psychology Lab, Department of Psychology, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Kathrin Janitzky
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University, 26121 Oldenburg, Germany
- University Clinic for Neurology at the Evangelical Hospital, 26121 Oldenburg, Germany
- Research Center Neurosensory Science, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Samanta D. Efficacy and Safety of Vagus Nerve Stimulation in Lennox-Gastaut Syndrome: A Scoping Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:905. [PMID: 39201840 PMCID: PMC11352554 DOI: 10.3390/children11080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy characterized by drug-resistant seizures, cognitive impairments, and abnormal electroencephalographic patterns. Vagus nerve stimulation (VNS) is a widely used neuromodulation therapy for LGS, but its effects on seizure outcomes, different seizure types, non-seizure outcomes, and adverse events in this population have not been comprehensively reviewed. To conduct a scoping review on the use of VNS in LGS, a literature search was performed in PubMed, OVID, Web of Science, and Embase from inception to 9 June 2024, using relevant keywords and without restrictions on study design. The search yielded forty eligible studies (twenty-four retrospective cohorts, fourteen prospective cohorts, and two registry analyses) comprising 1400 LGS patients treated with VNS. No randomized controlled trials were identified. Across studies, the median seizure reduction ranged from 20.6% to 65%, with 0% to 100% of patients achieving a ≥50% seizure reduction. No consistent preoperative biomarker of VNS responsiveness was identified in LGS. Although inconsistent among different studies, tonic, atonic, and tonic-clonic seizures responded best, while focal seizures responded worst. Improvements in seizure severity, alertness, and quality of life were reported in some studies, but cognitive and adaptive functioning generally remained unchanged. Adverse events were mostly mild and transient, including hoarseness, cough, and paresthesia. Device-related complications and infections were uncommon. In conclusion, further research is needed to better understand VNS's position in the evolving LGS treatment landscape and its cost effectiveness.
Collapse
Affiliation(s)
- Debopam Samanta
- Division of Child Neurology, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
6
|
Iammarino E, Marcantoni I, Sbrollini A, Mortada MHDJ, Morettini M, Burattini L. Scalp Electroencephalogram-Derived Involvement Indexes during a Working Memory Task Performed by Patients with Epilepsy. SENSORS (BASEL, SWITZERLAND) 2024; 24:4679. [PMID: 39066076 PMCID: PMC11280559 DOI: 10.3390/s24144679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
Electroencephalography (EEG) wearable devices are particularly suitable for monitoring a subject's engagement while performing daily cognitive tasks. EEG information provided by wearable devices varies with the location of the electrodes, the suitable location of which can be obtained using standard multi-channel EEG recorders. Cognitive engagement can be assessed during working memory (WM) tasks, testing the mental ability to process information over a short period of time. WM could be impaired in patients with epilepsy. This study aims to evaluate the cognitive engagement of nine patients with epilepsy, coming from a public dataset by Boran et al., during a verbal WM task and to identify the most suitable location of the electrodes for this purpose. Cognitive engagement was evaluated by computing 37 engagement indexes based on the ratio of two or more EEG rhythms assessed by their spectral power. Results show that involvement index trends follow changes in cognitive engagement elicited by the WM task, and, overall, most changes appear most pronounced in the frontal regions, as observed in healthy subjects. Therefore, involvement indexes can reflect cognitive status changes, and frontal regions seem to be the ones to focus on when designing a wearable mental involvement monitoring EEG system, both in physiological and epileptic conditions.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura Burattini
- Department of Information Engineering, Engineering Faculty, Università Politecnica delle Marche, 60131 Ancona, Italy; (E.I.); (I.M.); (A.S.); (M.J.M.); (M.M.)
| |
Collapse
|