1
|
Chen CD, Zheng YX, Lin HF, Yang HY. Development of Electronic Nose as a Complementary Screening Tool for Breath Testing in Colorectal Cancer. BIOSENSORS 2025; 15:82. [PMID: 39996984 PMCID: PMC11852643 DOI: 10.3390/bios15020082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025]
Abstract
(1) Background: Colorectal cancer is one of the leading causes of cancer-related death, while early detection decreases incidence and mortality. Current screening programs involving fecal immunological testing and colonoscopy commonly bring about unnecessary colonoscopies, which adds burden to healthcare systems. The objective of this study was to provide an assessment of the diagnostic performance of an electronic nose serving as a complementary screening tool to improve current screening programs in clinical settings. (2) Methods: We conducted a case-control study that included patients from a medical center with colorectal cancer and non-colorectal cancer controls. We analyzed the composition of volatile organic compounds in their exhaled breath using the electronic nose. We then used machine learning algorithms to develop predictive models and provided the estimated accuracy and reliability of the breath testing. (3) Results: We enrolled 77 patients, with 40 cases and 37 controls. The area under the curve, Kappa coefficient, sensitivity, and specificity of the selected model were 0.87 (95% CI 0.76-0.95), 0.66 (95% CI 0.49-0.83), 0.81, and 0.85. For subjects at an early stage of disease, the sensitivity and specificity were 0.90 and 0.85. Excluding smokers, the sensitivity and specificity were 0.88 and 0.92. (4) Conclusions: This study highlights the promising potential of breath testing using an electronic nose for enabling early detection and reducing unnecessary treatments. However, more independent data for external validation are required to ensure applicability and generalizability.
Collapse
Affiliation(s)
- Chih-Dao Chen
- Department of Family Medicine, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
| | - Yong-Xiang Zheng
- Department of Public Health, National Taiwan University College of Public Health, Taipei 100, Taiwan;
| | - Heng-Fu Lin
- Division of Trauma, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan;
- Graduate Institute of Medicine, Yuan Ze University, Taoyuan City 320, Taiwan
| | - Hsiao-Yu Yang
- Institute of Environmental and Occupational Health Sciences, National Taiwan University College of Public Health, Taipei 100, Taiwan
- Innovation and Policy Center for Population Health and Sustainable Environment (Population Health Research Center, PHRC), National Taiwan University, Taipei 100, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Family Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan
| |
Collapse
|
2
|
van Liere ELSA, Ramsoekh D, Daulton E, Dakkak M, van Lingen JM, Stewart TK, Bosch S, Carvalho B, Dekker E, Jacobs MAJM, Koornstra JJ, Kuijvenhoven JP, van Leerdam ME, de Meij TGJ, Meijer GA, Spaander MCW, Covington JA, de Boer NKH. Faecal Volatile Organic Compounds to Detect Colorectal Neoplasia in Lynch Syndrome-A Prospective Longitudinal Multicentre Study. Aliment Pharmacol Ther 2025; 61:145-158. [PMID: 39422092 PMCID: PMC11636173 DOI: 10.1111/apt.18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Non-invasive biomarkers may reduce post-colonoscopy colorectal cancer (CRC) rates and colonoscopy overuse in Lynch syndrome. Unlike faecal immunochemical test (FIT), faecal volatile organic compounds (VOCs) may accurately detect both advanced and non-advanced colorectal neoplasia. AIM The aim of this study was to evaluate the potential of faecal VOCs-separately and with FIT-to guide optimal colonoscopy intervals in Lynch syndrome. METHODS Prospective longitudinal multicentre study in which individuals with Lynch syndrome collected faeces before and after high-quality surveillance colonoscopy. VOC-patterns were analysed using field asymmetric ion mobility spectrometry (FAIMS) and gas chromatography-ion mobility spectrometry (GC-IMS) followed by machine learning pipelines, and combined with FIT at 2.55 μg Hb/g faeces. Gas chromatography time-of-flight mass spectrometry analysed individual VOC abundance. RESULTS Among 200 included individuals (57% female, median 51 years), 62 had relevant neoplasia at colonoscopy: 3 CRC, 6 advanced adenoma (AA), 3 advanced serrated lesion (ASL), and 50 non-advanced adenoma (NAA). Respective sensitivity and negative predictive value for CRC and AA (and also ASL in case of FAIMS) were 100% and 100% using FAIMS (54% specificity), and 89% and 99% using GC-IMS (58% specificity). Respective sensitivity and specificity for any relevant neoplasia were 88% and 44% (FAIMS) and 84% and 28% (GC-IMS); accuracy did not significantly improve upon VOC-FIT. VOC-patterns differed before and after polypectomy (AUC 0.70). NAA showed decreased faecal abundance of butanal, 2-oxohexane, dimethyldisulphide and dimethyltrisulphide. CONCLUSIONS In Lynch syndrome, faecal VOCs may be a promising strategy for postponing colonoscopy and for follow-up after polypectomy. Our results serve as a stepping stone for large validation studies. TRIAL REGISTRATION NL8749.
Collapse
Affiliation(s)
- Elsa L. S. A. van Liere
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research InstituteAmsterdamThe Netherlands
| | - Dewkoemar Ramsoekh
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research InstituteAmsterdamThe Netherlands
| | - Emma Daulton
- School of EngineeringUniversity of WarwickCoventryUK
| | - Maya Dakkak
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- School of MedicineVrije UniversiteitAmsterdamThe Netherlands
| | - Joris M. van Lingen
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- School of MedicineVrije UniversiteitAmsterdamThe Netherlands
| | | | - Sofie Bosch
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research InstituteAmsterdamThe Netherlands
| | - Beatriz Carvalho
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research InstituteAmsterdamThe Netherlands
| | - Maarten A. J. M. Jacobs
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Jan Jacob Koornstra
- Department of Gastroenterology and Hepatology, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
| | - Johan P. Kuijvenhoven
- Department of Gastroenterology and HepatologySpaarne GasthuisHoofddorpThe Netherlands
| | - Monique E. van Leerdam
- Department of Gastrointestinal OncologyNetherlands Cancer InstituteAmsterdamThe Netherlands
- Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Tim G. J. de Meij
- Amsterdam Gastroenterology Endocrinology Metabolism Research InstituteAmsterdamThe Netherlands
- Department of Paediatric GastroenterologyAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Gerrit A. Meijer
- Department of PathologyNetherlands Cancer InstituteAmsterdamThe Netherlands
| | - Manon C. W. Spaander
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | | | - Nanne K. H. de Boer
- Department of Gastroenterology and HepatologyAmsterdam University Medical CenterAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism Research InstituteAmsterdamThe Netherlands
| |
Collapse
|
3
|
Capuano R, Ciotti M, Catini A, Bernardini S, Di Natale C. Clinical applications of volatilomic assays. Crit Rev Clin Lab Sci 2025; 62:45-64. [PMID: 39129534 DOI: 10.1080/10408363.2024.2387038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
The study of metabolomics is revealing immense potential for diagnosis, therapy monitoring, and understanding of pathogenesis processes. Volatilomics is a subcategory of metabolomics interested in the detection of molecules that are small enough to be released in the gas phase. Volatile compounds produced by cellular processes are released into the blood and lymph, and can reach the external environment through different pathways, such as the blood-air interface in the lung that are detected in breath, or the blood-water interface in the kidney that leads to volatile compounds detected in urine. Besides breath and urine, additional sources of volatile compounds such as saliva, blood, feces, and skin are available. Volatilomics traces its roots back over fifty years to the pioneering investigations in the 1970s. Despite extensive research, the field remains in its infancy, hindered by a lack of standardization despite ample experimental evidence. The proliferation of analytical instrumentations, sample preparations and methods of volatilome sampling still make it difficult to compare results from different studies and to establish a common standard approach to volatilomics. This review aims to provide an overview of volatilomics' diagnostic potential, focusing on two key technical aspects: sampling and analysis. Sampling poses a challenge due to the susceptibility of human samples to contamination and confounding factors from various sources like the environment and lifestyle. The discussion then delves into targeted and untargeted approaches in volatilomics. Some case studies are presented to exemplify the results obtained so far. Finally, the review concludes with a discussion on the necessary steps to fully integrate volatilomics into clinical practice.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Marco Ciotti
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| | - Sergio Bernardini
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
- Department of Laboratory Medicine, University Hospital Tor Vergata, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Roma, Italy
- Interdepartmental Center for Volatilomics, "A. D'Amico", University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
4
|
Afzal A, Aranan YS, Roberts T, Covington J, Vidal L, Ahmed S, Gill T, Francis N. Diagnostic accuracy of the faecal immunochemical test and volatile organic compound analysis in detecting colorectal polyps: meta-analysis. BJS Open 2024; 9:zrae154. [PMID: 39972538 PMCID: PMC11839406 DOI: 10.1093/bjsopen/zrae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/10/2024] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND For the early detection of colorectal cancer, it is important to identify the premalignant lesions to prevent cancer development. Non-invasive testing methods such as the faecal immunochemical test are well established for the screening and triage of patients with suspected colorectal cancer but are not routinely used for polyps. Additionally, the role of volatile organic compounds has been tested for cancer detection. The aim of this review was to determine the diagnostic accuracy of the faecal immunochemical test and volatile organic compounds in detecting colorectal polyps. METHODS Original articles with diagnostic test accuracy measures for both the faecal immunochemical test and volatile organic compounds for advanced adenomas were included. Four databases including Medical Literature Analysis and Retrieval System Online (MEDLINE), Cumulative Index to Nursing and Allied Health Literature (CINAHL), Embase, and Web of Science were searched. The quality assessment tool for diagnostic accuracy study was used to assess the risk of bias and applicability. Meta-analysis was performed using RStudio® and the combined faecal immunochemical test-volatile organic compounds sensitivity and specificity were computed. RESULTS Twenty-two faecal immunochemical tests and 12 volatile organic compound-related articles were included in the systematic review whilst 18 faecal immunochemical tests and eight volatile organic compound-related studies qualified for the meta-analysis. The estimated pooled sensitivity and specificity of the faecal immunochemical test to diagnose advanced adenoma(s) were 36% (95% c.i. 30 to 41) and 89% (95% c.i. 86 to 91) respectively, with an area under the curve of 0.65, whilst volatile organic compounds pooled sensitivity and specificity was 83% (95% c.i. 70 to 91) and 76% (95% c.i. 60 to 87) respectively, with an area under the curve of 0.84. The combined faecal immunochemical test-volatile organic compounds increased the sensitivity to 89% with a specificity of 67%. CONCLUSION Faecal immunochemical testing has a higher specificity but poor sensitivity for detecting advanced adenomas, while volatile organic compound analysis is more sensitive. The combination of both tests enhances the detection rate of advanced adenomas.
Collapse
Affiliation(s)
- Asma Afzal
- Department of Colorectal Surgery, North Tees & Hartlepool NHS Foundation Trust, Stockton-on-Tees, UK
- School of Health & Life Sciences, Teesside University, Middlesbrough, UK
| | | | - Tom Roberts
- Undergraduate Department, University of Bristol, Bristol, UK
| | - James Covington
- Department of School of Engineering, Warwick University, Warwick, UK
| | - Lorena Vidal
- Department of Analytical Chemistry, Nutrition and Food Science, University Institute of Materials and ISABIAL, University of Alicante, Alicante, Spain
| | - Sonia Ahmed
- School of Health & Life Sciences, Teesside University, Middlesbrough, UK
| | - Talvinder Gill
- Department of Colorectal Surgery, North Tees & Hartlepool NHS Foundation Trust, Stockton-on-Tees, UK
| | - Nader Francis
- Department of Surgery, Yeovil Hospital, Southwest Yeovil, UK
- Department of Education and Research, Griffin Institute, London, UK
| |
Collapse
|
5
|
Gao L, Yang R, Zhang J, Sheng M, Sun Y, Han B, Kai G. Gas chromatography-ion mobility spectrometry for the detection of human disease: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7275-7293. [PMID: 39450646 DOI: 10.1039/d4ay01452a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Gas chromatography-ion mobility spectrometry (GC-IMS) is an advanced technique used for detecting trace compounds, due to its non-destructive, straightforward, and rapid analytical capabilities. However, the application of GC-IMS in human disease screening is barely reported. This review summarizes the application and related parameters of GC-IMS in human disease diagnosis. GC-IMS detects volatile organic compounds in human breath, feces, urine, bile, etc. It can be applied to diagnose diseases, such as respiratory diseases, cancer, enteropathy, Alzheimer's disease, bacterial infection, and metabolic diseases. Several potential disease markers have been identified by GC-IMS, including ethanal (COVID-19), 2-heptanone (lung cancer) and 3-pentanone (pulmonary cryptococcosis). In conclusion, GC-IMS offers a non-invasive approach to monitor and diagnose human diseases with broad applications.
Collapse
Affiliation(s)
- Li Gao
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Ruiwen Yang
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Jizhou Zhang
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Jiaowei Road 9, Liuhongqiao, Wenzhou, 325000, China.
| | - Miaomiao Sheng
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Yun Sun
- Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Jiaowei Road 9, Liuhongqiao, Wenzhou, 325000, China.
| | - Bing Han
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, Zhejiang Provincial Key TCM Laboratory for Chinese Resource Innovation and Transformation, School of Pharmaceutical Sciences, Jinhua Academy, Zhejiang Chinese Medical University, Binwen Road 548, Binjiang District, Hangzhou, 310053, China.
| |
Collapse
|
6
|
Wang Q, Fang Y, Tan S, Li Z, Zheng R, Ren Y, Jiang Y, Huang X. Diagnostic performance of volatile organic compounds analysis and electronic noses for detecting colorectal cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1397259. [PMID: 38817891 PMCID: PMC11138104 DOI: 10.3389/fonc.2024.1397259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction The detection of Volatile Organic Compounds (VOCs) could provide a potential diagnostic modality for the early detection and surveillance of colorectal cancers. However, the overall diagnostic accuracy of the proposed tests remains uncertain. Objective This systematic review is to ascertain the diagnostic accuracy of using VOC analysis techniques and electronic noses (e-noses) as noninvasive diagnostic methods for colorectal cancer within the realm of clinical practice. Methods A systematic search was undertaken on PubMed, EMBASE, Web of Science, and the Cochrane Library to scrutinize pertinent studies published from their inception to September 1, 2023. Only studies conducted on human subjects were included. Meta-analysis was performed using a bivariate model to obtain summary estimates of sensitivity, specificity, and positive and negative likelihood ratios. The Quality Assessment of Diagnostic Accuracy Studies 2 tool was deployed for quality assessment. The protocol for this systematic review was registered in PROSPERO, and PRISMA guidelines were used for the identification, screening, eligibility, and selection process. Results This review encompassed 32 studies, 22 studies for VOC analysis and 9 studies for e-nose, one for both, with a total of 4688 subjects in the analysis. The pooled sensitivity and specificity of VOC analysis for CRC detection were 0.88 (95% CI, 0.83-0.92) and 0.85 (95% CI, 0.78-0.90), respectively. In the case of e-nose, the pooled sensitivity was 0.87 (95% CI, 0.83-0.90), and the pooled specificity was 0.78 (95% CI, 0.62-0.88). The area under the receiver operating characteristic analysis (ROC) curve for VOC analysis and e-noses were 0.93 (95% CI, 0.90-0.95) and 0.90 (95% CI, 0.87-0.92), respectively. Conclusion The outcomes of this review substantiate the commendable accuracy of VOC analysis and e-nose technology in detecting CRC. VOC analysis has a higher specificity than e-nose for the diagnosis of CRC and a sensitivity comparable to that of e-nose. However, numerous limitations, including a modest sample size, absence of standardized collection methods, lack of external validation, and a notable risk of bias, were identified. Consequently, there exists an imperative need for expansive, multi-center clinical studies to elucidate the applicability and reproducibility of VOC analysis or e-nose in the noninvasive diagnosis of colorectal cancer. Systematic review registration https://www.crd.york.ac.uk/prospero/#recordDetails, identifier CRD42023398465.
Collapse
Affiliation(s)
- Qiaoling Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Fang
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shiyan Tan
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhuohong Li
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruyi Zheng
- Second Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yifeng Ren
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yifang Jiang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaopeng Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Vermeer E, Jagt JZ, Stewart TK, Covington JA, Struys EA, de Jonge R, de Boer NKH, de Meij TGJ. Faecal Volatile Organic Compound Analysis in De Novo Paediatric Inflammatory Bowel Disease by Gas Chromatography-Ion Mobility Spectrometry: A Case-Control Study. SENSORS (BASEL, SWITZERLAND) 2024; 24:2727. [PMID: 38732837 PMCID: PMC11086370 DOI: 10.3390/s24092727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
The gut microbiota and its related metabolites differ between inflammatory bowel disease (IBD) patients and healthy controls. In this study, we compared faecal volatile organic compound (VOC) patterns of paediatric IBD patients and controls with gastrointestinal symptoms (CGIs). Additionally, we aimed to assess if baseline VOC profiles could predict treatment response in paediatric IBD patients. We collected faecal samples from a cohort of de novo therapy-naïve paediatric IBD patients and CGIs. VOCs were analysed using gas chromatography-ion mobility spectrometry (GC-IMS). Response was defined as a combination of clinical response based on disease activity scores, without requiring treatment escalation. We included 109 paediatric IBD patients and 75 CGIs, aged 4 to 17 years. Faecal VOC profiles of paediatric IBD patients were distinguishable from those of CGIs (AUC ± 95% CI, p-values: 0.71 (0.64-0.79), <0.001). This discrimination was observed in both Crohn's disease (CD) (0.75 (0.67-0.84), <0.001) and ulcerative colitis (UC) (0.67 (0.56-0.78), 0.01) patients. VOC profiles between CD and UC patients were not distinguishable (0.57 (0.45-0.69), 0.87). Baseline VOC profiles of responders did not differ from non-responders (0.70 (0.58-0.83), 0.1). In conclusion, faecal VOC profiles of paediatric IBD patients differ significantly from those of CGIs.
Collapse
Affiliation(s)
- Eva Vermeer
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jasmijn Z. Jagt
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Trenton K. Stewart
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (T.K.S.); (J.A.C.)
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (T.K.S.); (J.A.C.)
| | - Eduard A. Struys
- Department of Laboratory Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (E.A.S.); (R.d.J.)
| | - Robert de Jonge
- Department of Laboratory Medicine, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (E.A.S.); (R.d.J.)
| | - Nanne K. H. de Boer
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Tim G. J. de Meij
- Department of Paediatric Gastroenterology, Emma Children’s Hospital, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands; (J.Z.J.); (T.G.J.d.M.)
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
8
|
Dalis C, Mesfin FM, Manohar K, Liu J, Shelley WC, Brokaw JP, Markel TA. Volatile Organic Compound Assessment as a Screening Tool for Early Detection of Gastrointestinal Diseases. Microorganisms 2023; 11:1822. [PMID: 37512994 PMCID: PMC10385474 DOI: 10.3390/microorganisms11071822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Gastrointestinal (GI) diseases have a high prevalence throughout the United States. Screening and diagnostic modalities are often expensive and invasive, and therefore, people do not utilize them effectively. Lack of proper screening and diagnostic assessment may lead to delays in diagnosis, more advanced disease at the time of diagnosis, and higher morbidity and mortality rates. Research on the intestinal microbiome has demonstrated that dysbiosis, or unfavorable alteration of organismal composition, precedes the onset of clinical symptoms for various GI diseases. GI disease diagnostic research has led to a shift towards non-invasive methods for GI screening, including chemical-detection tests that measure changes in volatile organic compounds (VOCs), which are the byproducts of bacterial metabolism that result in the distinct smell of stool. Many of these tools are expensive, immobile benchtop instruments that require highly trained individuals to interpret the results. These attributes make them difficult to implement in clinical settings. Alternatively, electronic noses (E-noses) are relatively cheaper, handheld devices that utilize multi-sensor arrays and pattern recognition technology to analyze VOCs. The purpose of this review is to (1) highlight how dysbiosis impacts intestinal diseases and how VOC metabolites can be utilized to detect alterations in the microbiome, (2) summarize the available VOC analytical platforms that can be used to detect aberrancies in intestinal health, (3) define the current technological advancements and limitations of E-nose technology, and finally, (4) review the literature surrounding several intestinal diseases in which headspace VOCs can be used to detect or predict disease.
Collapse
Affiliation(s)
- Costa Dalis
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fikir M Mesfin
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Krishna Manohar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - W Christopher Shelley
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - John P Brokaw
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
van Liere ELSA, van Dijk LJ, Bosch S, Vermeulen L, Heymans MW, Burchell GL, de Meij TGJ, Ramsoekh D, de Boer NKH. Urinary volatile organic compounds for colorectal cancer screening, a systematic review and meta-analysis. Eur J Cancer 2023; 186:69-82. [PMID: 37030079 DOI: 10.1016/j.ejca.2023.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND The faecal immunochemical test (FIT) suffers from suboptimal performance and participation in colorectal cancer (CRC) screening. Urinary volatile organic compounds (VOCs) may be a useful alternative. We aimed to determine the diagnostic potential of urinary VOCs for CRC/adenomas. By relating VOCs to known pathways, we aimed to gain insight into the pathophysiology of colorectal neoplasia. METHODS A systematic search was performed in PubMed, EMBASE and Web of Science. Original studies on urinary VOCs for CRC/adenoma detection with a control group were included. QUADAS-2 tool was used for quality assessment. Meta-analysis was performed by adopting a bivariate model for sensitivity/specificity. Fagan's nomogram estimated the performance of combined FIT-VOC. Neoplasm-associated VOCs were linked to pathways using the KEGG database. RESULTS Sixteen studies-involving 837 CRC patients and 1618 controls-were included; 11 performed chemical identification and 7 chemical fingerprinting. In all studies, urinary VOCs discriminated CRC from controls. Pooled sensitivity and specificity for CRC based on chemical fingerprinting were 84% (95% CI 73-91%) and 70% (95% CI 63-77%), respectively. The most distinctive individual VOC was butanal (AUC 0.98). The estimated probability of having CRC following negative FIT was 0.38%, whereas 0.09% following negative FIT-VOC. Combined FIT-VOC would detect 33% more CRCs. In total 100 CRC-associated urinary VOCs were identified; particularly hydrocarbons, carboxylic acids, aldehydes/ketones and amino acids, and predominantly involved in TCA-cycle or alanine/aspartate/glutamine/glutamate/phenylalanine/tyrosine/tryptophan metabolism, which is supported by previous research on (colorectal)cancer biology. The potential of urinary VOCs to detect precancerous adenomas or gain insight into their pathophysiology appeared understudied. CONCLUSION Urinary VOCs hold potential for non-invasive CRC screening. Multicentre validation studies are needed, especially focusing on adenoma detection. Urinary VOCs elucidate underlying pathophysiologic processes.
Collapse
Affiliation(s)
- Elsa L S A van Liere
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands.
| | - Laura J van Dijk
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands
| | - Sofie Bosch
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands
| | - Louis Vermeulen
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Laboratory for Experimental Oncology and Radiobiology, Centre for Experimental and Molecular Medicine, Amsterdam, the Netherlands; Cancer Centre Amsterdam, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - Martijn W Heymans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam, the Netherlands
| | - George L Burchell
- Medical Library, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tim G J de Meij
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Paediatric Gastroenterology, Amsterdam, the Netherlands
| | - Dewkoemar Ramsoekh
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands
| | - Nanne K H de Boer
- Amsterdam University Medical Centres, Department of Gastroenterology and Hepatology, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM) Research Institute, Amsterdam, the Netherlands; Vrije Universiteit, School of Medicine, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Krishnamoorthy A, Chandrapalan S, Bosch S, Bannaga A, De Boer NK, De Meij TG, Leja M, Hanna GB, De Vietro N, Altomare D, Arasaradnam RP. The Influence of Mechanical Bowel Preparation on Volatile Organic Compounds for the Detection of Gastrointestinal Disease-A Systematic Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23031377. [PMID: 36772415 PMCID: PMC9919600 DOI: 10.3390/s23031377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 05/25/2023]
Abstract
(1) Background: Colorectal cancer is the second commonest cause of cancer deaths worldwide; recently, volatile organic compounds (VOCs) have been proposed as potential biomarkers of this disease. In this paper, we aim to identify and review the available literature on the influence of mechanical bowel preparation on VOC production and measurement. (2) Methods: A systematic search for studies was carried out for articles relevant to mechanical bowel preparation and its effects on volatile organic compounds. A total of 4 of 1349 papers initially derived from the search were selected. (3) Results: Two studies with a total of 134 patients found no difference in measured breath VOC profiles after bowel preparation; one other study found an increase in breath acetone in 61 patients after bowel preparation, but no other compounds were affected. Finally, the last study showed the alteration of urinary VOC profiles. (4) Conclusions: There is limited data on the effect of bowel preparation on VOC production in the body. As further studies of VOCs are conducted in patients with symptoms of gastrointestinal disease, the quantification of the effect of bowel preparation on their abundance is required.
Collapse
Affiliation(s)
- Ashwin Krishnamoorthy
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Subashini Chandrapalan
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Ayman Bannaga
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| | - Nanne K.H. De Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centre, Vrije Universiteit Amsterdam, 1081 Amsterdam, The Netherlands
| | - Tim G.J. De Meij
- Department of Pediatric Gastroenterology, Emma’s Children Hospital, Amsterdam UMC, 1105 Amsterdam, The Netherlands
| | - Marcis Leja
- Institute of Clinical and Preventative Medicine, University of Latvia, LV-1586 Riga, Latvia
| | - George B. Hanna
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | | | - Donato Altomare
- Department of Surgery, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology, University Hospital Coventry and Warwickshire, Coventry CV2 2DX, UK
| |
Collapse
|
11
|
Bosch S, Acharjee A, Quraishi MN, Bijnsdorp IV, Rojas P, Bakkali A, Jansen EEW, Stokkers P, Kuijvenhoven J, Pham TV, Beggs AD, Jimenez CR, Struys EA, Gkoutos GV, de Meij TGJ, de Boer NKH. Integration of stool microbiota, proteome and amino acid profiles to discriminate patients with adenomas and colorectal cancer. Gut Microbes 2022; 14:2139979. [PMID: 36369736 PMCID: PMC9662191 DOI: 10.1080/19490976.2022.2139979] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Screening for colorectal cancer (CRC) reduces its mortality but has limited sensitivity and specificity. Aims We aimed to explore potential biomarker panels for CRC and adenoma detection and to gain insight into the interaction between gut microbiota and human metabolism in the presence of these lesions. METHODS This multicenter case-control cohort was performed between February 2016 and November 2019. Consecutive patients ≥18 years with a scheduled colonoscopy were asked to participate and divided into three age, gender, body-mass index and smoking status-matched subgroups: CRC (n = 12), adenomas (n = 21) and controls (n = 20). Participants collected fecal samples prior to bowel preparation on which proteome (LC-MS/MS), microbiota (16S rRNA profiling) and amino acid (HPLC) composition were assessed. Best predictive markers were combined to create diagnostic biomarker panels. Pearson correlation-based analysis on selected markers was performed to create networks of all platforms. RESULTS Combining omics platforms provided new panels which outperformed hemoglobin in this cohort, currently used for screening (AUC 0.98, 0.95 and 0.87 for CRC vs controls, adenoma vs controls and CRC vs adenoma, respectively). Integration of data sets revealed markers associated with increased blood excretion, stress- and inflammatory responses and pointed toward downregulation of epithelial integrity. CONCLUSIONS Integrating fecal microbiota, proteome and amino acids platforms provides for new biomarker panels that may improve noninvasive screening for adenomas and CRC, and may subsequently lead to lower incidence and mortality of colon cancer.
Collapse
Affiliation(s)
- Sofie Bosch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Endocrinology Metabolism Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands,CONTACT Sofie Bosch Department of Gastroenterology and Hepatology, Amsterdam UMC, VU University Medical Center, De Boelelaan 1118, Amsterdam1081HZ, The Netherlands
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, UK,NIHR Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK
| | - Mohammed Nabil Quraishi
- Department of Gastroenterology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK,Microbiome Treatment Center, University of Birmingham Microbiome Treatment Center, University of Birmingham, UK,Center for Liver and Gastroenterology Research, NIHR Birmingham Biomedical Research Center, University of Birmingham, Birmingham, UK
| | - Irene V Bijnsdorp
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands,Department of Urology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Patricia Rojas
- Institute of Applied Health Research, University of Birmingham, Birmingham, UK
| | - Abdellatif Bakkali
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Erwin EW Jansen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Pieter Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Johan Kuijvenhoven
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Hoofddorp and Haarlem, The Netherlands
| | - Thang V Pham
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Connie R Jimenez
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center, Amsterdam, The Netherlands
| | - Eduard A Struys
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham NHS, Foundation Trust, UK,NIHR Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK,Microbiome Treatment Center, MRC Health Data Research UK (HDR UK), Birmingham, UK,Microbiome Treatment Center, NIHR Experimental Cancer Medicine Center, Birmingham, UK,Microbiome Treatment Center, NIHR Biomedical Research Center, University Hospital Birmingham, Birmingham, UK
| | - Tim GJ de Meij
- Department of Paediatric Gastroenterology, AG&M Research Institute, Amsterdam UMC, VU University Amsterdam, Amsterdam, The Netherlands
| | - Nanne KH de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Endocrinology Metabolism Institute, Amsterdam University Medical Centre, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Yang H, Mou Y, Hu B. Diagnostic Ability of Volatile Organic Compounds in Digestive Cancer: A Systematic Review With Meta-Analysis. Clin Med Insights Oncol 2022; 16:11795549221105027. [PMID: 35754925 PMCID: PMC9218909 DOI: 10.1177/11795549221105027] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Volatile organic compounds (VOCs) have been involved in cancer diagnosis via breath, urine, and feces. We aimed to assess the diagnostic ability of VOCs on digestive cancers. METHODS We systematically reviewed prospective clinical trials evaluating VOCs' diagnostic ability on esophageal, gastric, colorectal, hepatic, and pancreatic cancer (PC). Databases including PubMed and Ovid-Medline were searched. RESULTS A total of 35 trials with 5314 patient-times qualified for inclusion. The pooled sensitivity of VOCs diagnosing gastroesophageal cancer from healthy controls is 0.89 (95% confidence interval [CI]: 0.82-0.94), the pooled specificity is 0.890 (95% CI: 0.84-0.93), and area under the curve (AUC) of the summary receiver operating characteristic curve is 0.95 (95% CI: 0.93-0.95). The pooled sensitivity of VOCs diagnosing colorectal cancer from heathy controls is 0.92 (95% CI: 0.85-0.96), the pooled specificity is 0.88 (95% CI: 0.77-0.94), and the AUC is 0.96 (95% CI: 0.94-0.97). The pooled sensitivity of VOCs distinguishing gastrointestinal (GI) cancer from precancerous lesions is 0.84 (95% CI: 0.67-0.92), the pooled specificity is 0.74 (95% CI: 0.43-0.91), and the AUC is 0.87 (95% CI: 0.84-0.89). The pooled sensitivity of VOCs diagnosing hepatocellular carcinoma is 0.68 (95% CI: 0.52-0.81), the pooled specificity is 0.81 (95% CI: 0.47-0.96), and the AUC is 0.78 (95% CI: 0.74-0.81). The pooled sensitivity of VOCs diagnosing PC is 0.88 (95% CI: 0.80-0.93), the pooled specificity is 0.82 (95% CI: 0.62-0.93), and the AUC is 0.92 (95% CI: 0.89-0.94). CONCLUSIONS Volatile organic compounds have potential role in diagnosing GI cancer with comparatively high sensitivity, specificity, and AUC (PROSPERO registration number: CRD42021260039).
Collapse
Affiliation(s)
- Hang Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Mou
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Hu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Bosch S, Acharjee A, Quraishi MN, Rojas P, Bakkali A, Jansen EEW, Brizzio Brentar M, Kuijvenhoven J, Stokkers P, Struys E, Beggs AD, Gkoutos GV, de Meij TGJ, de Boer NKH. The potential of fecal microbiota and amino acids to detect and monitor patients with adenoma. Gut Microbes 2022; 14:2038863. [PMID: 35188868 PMCID: PMC8865277 DOI: 10.1080/19490976.2022.2038863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The risk of recurrent dysplastic colonic lesions is increased following polypectomy. Yield of endoscopic surveillance after adenoma removal is low, while interval colorectal cancers occur. To longitudinally assess the dynamics of fecal microbiota and amino acids in the presence of adenomatous lesions and after their endoscopic removal. In this longitudinal case-control study, patients collected fecal samples prior to bowel preparation before scheduled colonoscopy and 3 months after this intervention. Based on colonoscopy outcomes, patients with advanced adenomas and nonadvanced adenomas (0.5-1.0 cm) who underwent polypectomy during endoscopy (n = 19) were strictly matched on age, body-mass index, and smoking habits to controls without endoscopic abnormalities (n = 19). Microbial taxa were measured by 16S RNA sequencing, and amino acids (AA) were measured by high-performance liquid chromatography (HPLC). Adenoma patients were discriminated from controls based on AA and microbial composition. Levels of proline (p = .001), ornithine (p = .02) and serine (p = .02) were increased in adenoma patients compared to controls but decreased to resemble those of controls after adenoma removal. These AAs were combined as a potential adenoma-specific panel (AUC 0.79(0.64-0.94)). For bacterial taxa, differences between patients with adenomas and controls were found (Bifidobacterium spp.↓, Anaerostipes spp.↓, Butyricimonas spp.↑, Faecalitalea spp.↑ and Catenibacterium spp.↑), but no alterations in relative abundance were observed after polypectomy. Furthermore, Faecalitalea spp. and Butyricimonas spp. were significantly correlated with adenoma-specific amino acids. We selected an amino acid panel specifically increased in the presence of adenomas and a microbial signature present in adenoma patients, irrespective of polypectomy. Upon validation, these panels may improve the effectiveness of the surveillance program by detection of high-risk individuals and determination of surveillance endoscopy timing, leading to less unnecessary endoscopies and less interval cancer.
Collapse
Affiliation(s)
- Sofie Bosch
- Amsterdam Umc, Vu University Medical Center, Department of Gastroenterology and Hepatology, Ag&m Research Institute, Amsterdam, The Netherlands,contact Sofie Bosch Amsterdam UMC, VU University Medical Center, De Boelelaan 11181081HZ, Amsterdam, The Netherlands
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham Nhs, Foundation Trust, UK,Nihr Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK
| | - Mohammed N Quraishi
- Department of Gastroenterology, University Hospitals Birmingham Nhs Foundation Trust, Birmingham, UK,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK,University of Birmingham Microbiome Treatment Center, University of Birmingham, UK,Center for Liver and Gastroenterology Research, Nihr Birmingham Biomedical Research Center, University of Birmingham, Birmingham, UK
| | - Patricia Rojas
- Institute of Applied Health Research, University of Birmingham, UK
| | - Abdellatif Bakkali
- Department of Clinical Chemistry, Vu University Medical Center, Amsterdam, The Netherlands
| | - Erwin EW Jansen
- Department of Clinical Chemistry, Vu University Medical Center, Amsterdam, The Netherlands
| | - Marina Brizzio Brentar
- Amsterdam Umc, Vu University Medical Center, Department of Gastroenterology and Hepatology, Ag&m Research Institute, Amsterdam, The Netherlands
| | - Johan Kuijvenhoven
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Spaarne Gasthuis (primary institute), Hoofddorp and Haarlem, The Netherlands
| | - Pieter Stokkers
- Olvg West, Department of Gastroenterology and Hepatology, Onze Lieve Vrouwe Gasthuis West, Amsterdam, The Netherlands
| | - Eduard Struys
- Department of Clinical Chemistry, Vu University Medical Center, Amsterdam, The Netherlands
| | - Andrew D Beggs
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Georgios V Gkoutos
- College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Center for Computational Biology, University of Birmingham, UK,Institute of Translational Medicine, University Hospitals Birmingham Nhs, Foundation Trust, UK,Nihr Surgical Reconstruction and Microbiology Research Center, University Hospital Birmingham, Birmingham, UK,Medical Research Counsil, MRC Health Data Research, UK,NIHR Experimental Cancer Medicine Center, National Institute for Health Research, Birmingham, UK,NIHR Biomedical Research Center, University Hospital Birmingham, Birmingham, UK
| | - Tim GJ de Meij
- Amsterdam Umc, Vu University Amsterdam, Department of Paediatric Gastroenterology, Ag&m Research Institute, Amsterdam, The Netherlands
| | - Nanne KH de Boer
- Amsterdam Umc, Vu University Medical Center, Department of Gastroenterology and Hepatology, Ag&m Research Institute, Amsterdam, The Netherlands
| |
Collapse
|
14
|
van Liere ELSA, de Boer NKH, Dekker E, van Leerdam ME, de Meij TGJ, Ramsoekh D. Systematic review: non-endoscopic surveillance for colorectal neoplasia in individuals with Lynch syndrome. Aliment Pharmacol Ther 2022; 55:778-788. [PMID: 35181895 PMCID: PMC9303645 DOI: 10.1111/apt.16824] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Individuals with Lynch syndrome are at high risk for colorectal cancer (CRC). Regular colonoscopies have proven to decrease CRC incidence and mortality. However, colonoscopy is burdensome and interval CRCs still occur. Hence, an accurate, less-invasive screening method that guides the timing of colonoscopy would be of important value. AIM To outline the performance of non-endoscopic screening modalities for Lynch-associated CRC and adenomas. METHODS Systematic literature search in MEDLINE and EMBASE to identify studies investigating imaging techniques and biomarkers for detection of CRC and adenomas in Lynch syndrome. The QUADAS-2 tool was used for the quality assessment of included studies. RESULTS Seven of 1332 screened articles fulfilled the inclusion criteria. Two studies evaluated either CT colonography or MR colonography; both techniques were unable to detect CRC and (advanced) adenomas <10 mm. The other five studies evaluated plasma methylated-SEPTIN9, faecal immunochemical test (FIT), faecal tumour DNA markers (BAT-26, hMLH1, p53, D9S171, APC, D9S162, IFNA and DCC) and faecal microbiome as screening modalities. Sensitivity for CRC varied from 33% (BAT-26) to 70% (methylated-SEPTIN9) to 91% (hMLH1). High specificity (94-100%) for CRC and/or adenomas was observed for methylated-SEPTIN9, FIT and BAT-26. Desulfovibrio was enriched in the stool of patients having adenomas. However, all these studies were characterised by small populations, high/unclear risk of bias and/or low prevalence of adenomas. CONCLUSIONS Imaging techniques are unsuitable for colon surveillance in Lynch syndrome, whereas biomarkers are understudied. Having outlined biomarker research in Lynch-associated and sporadic CRC/adenomas, we believe that these non-invasive markers may hold potential (whether or not combined) for this population. As they could be of great value, (pre-)clinical studies in this field should be prioritised.
Collapse
Affiliation(s)
- Elsa L. S. A. van Liere
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centre, AGEM Research Institute, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Nanne K. H. de Boer
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centre, AGEM Research Institute, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centre, University of AmsterdamAmsterdamThe Netherlands
| | - Monique E. van Leerdam
- Department of GastroenterologyNetherlands Cancer InstituteAmsterdamThe Netherlands,Department of Gastroenterology and HepatologyLeiden University Medical CenterLeidenThe Netherlands
| | - Tim G. J. de Meij
- Department of Paediatric GastroenterologyEmma Children’s Hospital, Amsterdam University Medical Centre, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Dewkoemar Ramsoekh
- Department of Gastroenterology and HepatologyAmsterdam University Medical Centre, Vrije Universiteit AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
15
|
Tyagi H, Daulton E, Bannaga AS, Arasaradnam RP, Covington JA. Urinary Volatiles and Chemical Characterisation for the Non-Invasive Detection of Prostate and Bladder Cancers. BIOSENSORS 2021; 11:bios11110437. [PMID: 34821653 PMCID: PMC8615657 DOI: 10.3390/bios11110437] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 05/08/2023]
Abstract
Bladder cancer (BCa) and prostate cancer (PCa) are some of the most common cancers in the world. In both BCa and PCa, the diagnosis is often confirmed with an invasive technique that carries a risk to the patient. Consequently, a non-invasive diagnostic approach would be medically desirable and beneficial to the patient. The use of volatile organic compounds (VOCs) for disease diagnosis, including cancer, is a promising research area that could support the diagnosis process. In this study, we investigated the urinary VOC profiles in BCa, PCa patients and non-cancerous controls by using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) to analyse patient samples. GC-IMS separated BCa from PCa (area under the curve: AUC: 0.97 (0.93-1.00)), BCa vs. non-cancerous (AUC: 0.95 (0.90-0.99)) and PCa vs. non-cancerous (AUC: 0.89 (0.83-0.94)) whereas GC-TOF-MS differentiated BCa from PCa (AUC: 0.84 (0.73-0.93)), BCa vs. non-cancerous (AUC: 0.81 (0.70-0.90)) and PCa vs. non-cancerous (AUC: 0.94 (0.90-0.97)). According to our study, a total of 34 biomarkers were found using GC-TOF-MS data, of which 13 VOCs were associated with BCa, seven were associated with PCa, and 14 VOCs were found in the comparison of BCa and PCa.
Collapse
Affiliation(s)
- Heena Tyagi
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
| | - Ayman S. Bannaga
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology, University Hospital Coventry & Warwickshire, Coventry CV2 2DX, UK; (A.S.B.); (R.P.A.)
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
- School of Health Sciences, Coventry University, Coventry CV1 5FB, UK
- School of Biological Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.)
- Correspondence:
| |
Collapse
|
16
|
Gouzerh F, Bessière JM, Ujvari B, Thomas F, Dujon AM, Dormont L. Odors and cancer: Current status and future directions. Biochim Biophys Acta Rev Cancer 2021; 1877:188644. [PMID: 34737023 DOI: 10.1016/j.bbcan.2021.188644] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023]
Abstract
Cancer is the second leading cause of death in the world. Because tumors detected at early stages are easier to treat, the search for biomarkers-especially non-invasive ones-that allow early detection of malignancies remains a central goal to reduce cancer mortality. Cancer, like other pathologies, often alters body odors, and much has been done by scientists over the last few decades to assess the value of volatile organic compounds (VOCs) as signatures of cancers. We present here a quantitative review of 208 studies carried out between 1984 and 2020 that explore VOCs as potential biomarkers of cancers. We analyzed the main findings of these studies, listing and classifying VOCs related to different cancer types while considering both sampling methods and analysis techniques. Considering this synthesis, we discuss several of the challenges and the most promising prospects of this research direction in the war against cancer.
Collapse
Affiliation(s)
- Flora Gouzerh
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France.
| | - Jean-Marie Bessière
- Ecole Nationale de Chimie de Montpellier, Laboratoire de Chimie Appliquée, Montpellier, France
| | - Beata Ujvari
- Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Frédéric Thomas
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - Antoine M Dujon
- CREEC/CANECEV (CREES), Montpellier, France; MIVEGEC, Université de Montpellier, CNRS, IRD, Montpellier, France; Deakin University, School of Life and Environmental Sciences, Centre for Integrative Ecology, Waurn Ponds, Vic 3216, Australia
| | - Laurent Dormont
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Univ Paul Valéry Montpellier 3, Montpellier, France
| |
Collapse
|
17
|
Yin J, Wu M, Lin R, Li X, Ding H, Han L, Yang W, Song X, Li W, Qu H, Yu H, Li Z. Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Chandrapalan S, Bosch S, Cubiella J, Guardiola J, Kimani P, Mulder C, Persaud K, de Meij TGJ, Altomare DF, Brenner H, de Boer NKH, Ricciardiello L, Arasaradnam RP. Systematic review with meta-analysis: volatile organic compound analysis to improve faecal immunochemical testing in the detection of colorectal cancer. Aliment Pharmacol Ther 2021; 54:14-23. [PMID: 34004036 DOI: 10.1111/apt.16405] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/20/2021] [Accepted: 04/24/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Faecal immunochemical test (FIT) is emerging as a valid test to rule-out the presence of colorectal cancer (CRC). However, the accuracy of FIT is dependent on the cut-off applied. An additional low-cost test could improve further detection of CRC. AIMS To evaluate the efficacy of combined FIT and volatile organic compounds (VOC) in the detection of CRC within symptomatic populations. METHODS Systematic reviews on the diagnostic accuracy of FIT and VOC, for the detection of CRC, were updated. Meta-analyses were performed adopting a bivariate model for sensitivity and specificity. Clinical utility of combined FIT and VOC was estimated using Fagan's nomogram. Post-test probability of FIT negatives was used as a pre-test probability for VOC. RESULTS The pooled sensitivity and specificity of FIT at 10 µg/g faeces, for the detection of CRC, were 0.914 (95% confidence interval [CI] = 0.894-0.936) and 0.783 (CI = 0.850-0.696), respectively. For VOC, the sensitivity was 0.837 (CI = 0.781-0.881) and the specificity was 0.803 (CI = 0.870-0.712). The area under the curve for FIT and VOC were 0.926 and 0.885, respectively. In a population with 5% CRC prevalence, the estimated probability of having CRC following a negative FIT was 0.5% and following both negative FIT and VOC was 0.1%. CONCLUSIONS In a FIT-negative symptomatic population, VOC can be a good test to rule-out the presence of CRC. The estimated probability reduction by 0.4% when both tests being negative offers adequate safety netting in primary care for the exclusion of CRC. The number needed to colonoscope to identify one CRC is eight if either FIT or VOC positive. Cost-effectiveness and clinical accuracy of this approach will need further evaluation.
Collapse
|
19
|
Are Volatile Organic Compounds Accurate Markers in the Assessment of Colorectal Cancer and Inflammatory Bowel Diseases? A Review. Cancers (Basel) 2021; 13:cancers13102361. [PMID: 34068419 PMCID: PMC8153598 DOI: 10.3390/cancers13102361] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Early diagnosis is crucial for reducing colorectal cancer-related mortality in both the general population and inflammatory bowel disease. Volatile organic compound (VOC) analysis is a promising alternative to the gold standard procedure, endoscopy, for early detection and surveillance of colorectal diseases. This review aimed to provide a general overview of the most recent evidence in this area on VOC testing in breath, stool, and urine samples. Abstract Colorectal cancer (CRC) is one of the leading causes of cancer-related death in the Western world. Early detection decreases incidence and mortality. Screening programs based on fecal occult blood testing help identify patients requiring endoscopic examination, but accuracy is far from optimal. Among the alternative strategies, volatile organic compounds (VOCs) represent novel potentially useful biomarkers of colorectal cancer. They also represent a promising tool for the screening of both intestinal inflammation and related CRC. The review is focused on the diagnostic potential of VOCs in sporadic CRC and in inflammatory bowel diseases (IBD), which increase the risk of CRC, analyzing future clinical applications. Despite limitations related to inadequate strength of evidence, differing analytical platforms identify different VOCs, and this unconventional approach for diagnosing colorectal cancer is promising. Some VOC profiles, besides identifying inflammation, seem disease-specific in inflammatory bowel diseases. Thus, breath, urine, and fecal VOCs provide a new and promising clinical approach to differential diagnosis, evaluation of the inflammatory status, and possibly the assessment of treatment efficacy in IBD. Conversely, specific VOC patterns correlating inflammatory bowel disease and cancer risk are still lacking, and studies focused on this issue are strongly encouraged. No prospective studies have assessed the risk of CRC development by using VOCs in samples collected before the onset of disease, both in the general population and in patients with IBD.
Collapse
|
20
|
Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G. Towards Novel Non-Invasive Colorectal Cancer Screening Methods: A Comprehensive Review. Cancers (Basel) 2021; 13:1820. [PMID: 33920293 PMCID: PMC8070308 DOI: 10.3390/cancers13081820] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death in the world. Since the 70s, many countries have adopted different CRC screening programs, which has resulted in a decrease in mortality. However, current screening test options still present downsides. The commercialized stool-based tests present high false-positive rates and low sensitivity, which negatively affects the detection of early stage carcinogenesis. The gold standard colonoscopy has low uptake due to its invasiveness and the perception of discomfort and embarrassment that the procedure may bring. In this review, we collected and described the latest data about alternative CRC screening techniques that can overcome these disadvantages. Web of Science and PubMed were employed as search engines for studies reporting on CRC screening tests and future perspectives. The searches generated 555 articles, of which 93 titles were selected. Finally, a total of 50 studies, describing 14 different CRC alternative tests, were included. Among the investigated techniques, the main feature that could have an impact on CRC screening perception and uptake was the ease of sample collection. Urine, exhaled breath, and blood-based tests promise to achieve good diagnostic performance (sensitivity of 63-100%, 90-95%, and 47-97%, respectively) while minimizing stress and discomfort for the patient.
Collapse
Affiliation(s)
- Allegra Ferrari
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
| | - Isabelle Neefs
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium
| | - Sarah Hoeck
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Guido Van Hal
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| |
Collapse
|
21
|
Bosch S, Wintjens DSJ, Wicaksono A, Kuijvenhoven J, van der Hulst R, Stokkers P, Daulton E, Pierik MJ, Covington JA, de Meij TGJ, de Boer NKH. The faecal scent of inflammatory bowel disease: Detection and monitoring based on volatile organic compound analysis. Dig Liver Dis 2020; 52:745-752. [PMID: 32402741 DOI: 10.1016/j.dld.2020.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is diagnosed and monitored using endoscopic assessment, which is invasive and costly. In this study, potential of faecal volatile organic compounds (VOC) analysis for IBD detection and identification of disease activity was evaluated. METHODS IBD patients visiting outpatient clinics of participating tertiary hospitals were included. Active disease was defined as FCP ≥250 mg/g, remission as FCP <100 mg/g with Harvey Bradshaw Index <4 for Crohn's disease (CD) or Simple Clinical Colitis Activity Index <3 for ulcerative colitis (UC). Healthy controls (HC) were patients without mucosal abnormalities during colonoscopy. Faecal samples were measured using gas chromatography-ion mobility spectrometry. RESULTS A total of 280 IBD patients collected 107 CDa, 84 CDr, 80 UCa and 63 UCr samples. Additionally, 227 HC provided one faecal sample. UC and CD were discriminated from HC with high accuracy (AUC (95%CI): UCa vs HC 0.96(0.94-0.99); UCr vs HC 0.95(0.93-0.98); CDa vs HC 0.96(0.94-0.99); CDr vs HC 0.95(0.93-0.98)). There were small differences between UC and CD (0.55(0.50-0.6)) and no differences between active disease and remission (UCa vs UCr 0.63(0.44-0.82); CDa vs CDr 0.52(0.39-0.65)). CONCLUSION Our study outcomes imply that faecal VOC analysis holds potential for identifying biomarkers for IBD detection but not for monitoring disease activity.
Collapse
Affiliation(s)
- Sofie Bosch
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M research institute, Amsterdam, The Netherlands.
| | - Dion S J Wintjens
- MUMC+, Maastricht University, Department of Gastroenterology and Hepatology, Maastricht, The Netherlands
| | - Alfian Wicaksono
- University of Warwick, School of Engineering, Coventry, United Kingdom
| | - Johan Kuijvenhoven
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Hoofddorp and Haarlem, The Netherlands
| | - René van der Hulst
- Spaarne Gasthuis, Department of Gastroenterology and Hepatology, Hoofddorp and Haarlem, The Netherlands
| | - Pieter Stokkers
- OLVG West, Department of Gastroenterology and hepatology, Amsterdam, The Netherlands
| | - Emma Daulton
- University of Warwick, School of Engineering, Coventry, United Kingdom
| | - Marieke J Pierik
- MUMC+, Maastricht University, Department of Gastroenterology and Hepatology, Maastricht, The Netherlands
| | - James A Covington
- University of Warwick, School of Engineering, Coventry, United Kingdom
| | - Tim G J de Meij
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Pediatric Gastroenterology, AG&M research institute, Amsterdam, The Netherlands
| | - Nanne K H de Boer
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Gastroenterology and Hepatology, AG&M research institute, Amsterdam, The Netherlands
| |
Collapse
|