Cutting JE, DeLong JE, Brunick KL. Temporal fractals in movies and mind.
Cogn Res Princ Implic 2018;
3:8. [PMID:
29577071 PMCID:
PMC5849648 DOI:
10.1186/s41235-018-0091-x]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/19/2018] [Indexed: 11/28/2022] Open
Abstract
Fractal patterns are seemingly everywhere. They can be analyzed through Fourier and power analyses, and other methods. Cutting, DeLong, and Nothelfer (2010) analyzed as time-series data the fluctuations of shot durations in 150 popular movies released over 70 years. They found that these patterns had become increasingly fractal-like and concluded that they might be linked to those found in the results of psychological tasks involving attention. To explore this possibility further, we began by analyzing the shot patterns of almost twice as many movies released over a century. The increasing fractal-like nature of shot patterns is affirmed, as determined by both a slope measure and a long-range dependence measure, neither of which is sensitive to the vector lengths of their inputs within the ranges explored here. But the main reason for increased long-range dependence is related to, but not caused by, the increasing vector length of the shot-series samples. It appears that, in generating increasingly fractal-like patterns, filmmakers have systematically explored dimensions that are important for holding our attention-shot durations, scene durations, motion, and sound amplitude-and have crafted fluctuations in them like those of our endogenous attention patterns. Other dimensions-luminance, clutter, and shot scale-are important to film style but their variations seem not to be important to holding viewers' moment-to-moment attention and have not changed in their fractional dimension over time.
Collapse