1
|
Flanders WH, Moïse NS, Otani NF. Use of machine learning and Poincaré density grid in the diagnosis of sinus node dysfunction caused by sinoatrial conduction block in dogs. J Vet Intern Med 2024; 38:1305-1324. [PMID: 38682817 PMCID: PMC11099791 DOI: 10.1111/jvim.17071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/27/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Sinus node dysfunction because of abnormal impulse generation or sinoatrial conduction block causes bradycardia that can be difficult to differentiate from high parasympathetic/low sympathetic modulation (HP/LSM). HYPOTHESIS Beat-to-beat relationships of sinus node dysfunction are quantifiably distinguishable by Poincaré plots, machine learning, and 3-dimensional density grid analysis. Moreover, computer modeling establishes sinoatrial conduction block as a mechanism. ANIMALS Three groups of dogs were studied with a diagnosis of: (1) balanced autonomic modulation (n = 26), (2) HP/LSM (n = 26), and (3) sinus node dysfunction (n = 21). METHODS Heart rate parameters and Poincaré plot data were determined [median (25%-75%)]. Recordings were randomly assigned to training or testing. Supervised machine learning of the training data was evaluated with the testing data. The computer model included impulse rate, exit block probability, and HP/LSM. RESULTS Confusion matrices illustrated the effectiveness in diagnosing by both machine learning and Poincaré density grid. Sinus pauses >2 s differentiated (P < .0001) HP/LSM (2340; 583-3947 s) from sinus node dysfunction (8503; 7078-10 050 s), but average heart rate did not. The shortest linear intervals were longer with sinus node dysfunction (315; 278-323 ms) vs HP/LSM (260; 251-292 ms; P = .008), but the longest linear intervals were shorter with sinus node dysfunction (620; 565-698 ms) vs HP/LSM (843; 799-888 ms; P < .0001). CONCLUSIONS Number and duration of pauses, not heart rate, differentiated sinus node dysfunction from HP/LSM. Machine learning and Poincaré density grid can accurately identify sinus node dysfunction. Computer modeling supports sinoatrial conduction block as a mechanism of sinus node dysfunction.
Collapse
Affiliation(s)
- Wyatt Hutson Flanders
- Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - N. Sydney Moïse
- Section of Cardiology, Department of Clinical Sciences, College of Veterinary MedicineCornell UniversityIthacaNew YorkUSA
| | - Niels F. Otani
- School of Mathematical SciencesRochester Institute of TechnologyRochesterNew YorkUSA
| |
Collapse
|
2
|
Flanders WH, Moïse NS, Pariaut R, Sargent J. The next heartbeat: creating dynamic and histographic Poincaré plots for the assessment of cardiac rhythms. J Vet Cardiol 2022; 42:1-13. [DOI: 10.1016/j.jvc.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
|
3
|
Araújo NS, Reyes-Garcia SZ, Brogin JAF, Bueno DD, Cavalheiro EA, Scorza CA, Faber J. Chaotic and stochastic dynamics of epileptiform-like activities in sclerotic hippocampus resected from patients with pharmacoresistant epilepsy. PLoS Comput Biol 2022; 18:e1010027. [PMID: 35417449 PMCID: PMC9037954 DOI: 10.1371/journal.pcbi.1010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/25/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022] Open
Abstract
The types of epileptiform activity occurring in the sclerotic hippocampus with highest incidence are interictal-like events (II) and periodic ictal spiking (PIS). These activities are classified according to their event rates, but it is still unclear if these rate differences are consequences of underlying physiological mechanisms. Identifying new and more specific information related to these two activities may bring insights to a better understanding about the epileptogenic process and new diagnosis. We applied Poincaré map analysis and Recurrence Quantification Analysis (RQA) onto 35 in vitro electrophysiological signals recorded from slices of 12 hippocampal tissues surgically resected from patients with pharmacoresistant temporal lobe epilepsy. These analyzes showed that the II activity is related to chaotic dynamics, whereas the PIS activity is related to deterministic periodic dynamics. Additionally, it indicates that their different rates are consequence of different endogenous dynamics. Finally, by using two computational models we were able to simulate the transition between II and PIS activities. The RQA was applied to different periods of these simulations to compare the recurrences between artificial and real signals, showing that different ranges of regularity-chaoticity can be directly associated with the generation of PIS and II activities. Temporal lobe epilepsy (TLE) is the most prevalent type of epilepsy in adults and hippocampal sclerosis is the major pathophysiological substrate of pharmaco-refractory TLE. Different patterns of epileptiform-like activity have been described in human hippocampal sclerosis, but the standard analysis applied to characterize the activities usually do not consider the nonlinear features that epileptiform patterns exhibit. Here, using Poincaré map and Recurrence Quantitative Analysis we characterized the most prevalent type of epileptiform-like activities—interictal-like events (II) and periodic ictal spiking (PIS), recorded in vitro from resected hippocampi of pharmacoresistant patients with TLE—according to their levels of stochasticity, chaoticity and determinism. The II activities showed to be more chaotic with complex rhythmicity than PIS activities. The nonlinear dynamic differences between II and PIS leads us to conjecture that they are expressions of different seizure susceptibility. We also identified that each hippocampal subfield expresses II and PIS activities in a specific and different way. Finally, from the modulation of internal parameters of two computational models, we show the conversion of one type of activity into the other, showing how specific neuron networks synchronize over time, leading to II and PIS activities and then into a generalized seizure.
Collapse
Affiliation(s)
- Noemi S. Araújo
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Selvin Z. Reyes-Garcia
- Departamento de Ciencias Morfológicas, Facultad de Ciencias Médicas, Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - João A. F. Brogin
- Department of Mechanical Engineering, São Paulo State University (UNESP), School of Engineering of Ilha Solteira, Ilha Solteira, São Paulo, Brazil
| | - Douglas D. Bueno
- Department of Mathematics, São Paulo State University (UNESP), School of Engineering of Ilha Solteira, Ilha Solteira, São Paulo, Brazil
| | - Esper A. Cavalheiro
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Carla A. Scorza
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Jean Faber
- Department of Neurology and Neurosurgery, Federal University of São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
4
|
Chen X, Huang J, Luo F, Gao S, Xi M, Li J. Single channel photoplethysmography-based obstructive sleep apnea detection and arrhythmia classification. Technol Health Care 2021; 30:399-411. [PMID: 34486994 DOI: 10.3233/thc-213138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Simplified and easy-to-use monitoring approaches are crucial for the early diagnosis and prevention of obstructive sleep apnea (OSA) and its complications. OBJECTIVE In this study, the OSA detection and arrhythmia classification algorithms based on single-channel photoplethysmography (PPG) are proposed for the early screening of OSA. METHODS Thirty clinically diagnosed OSA patients participated in this study. Fourteen features were extracted from the PPG signals. The relationship between the number of features as inputs of the support vector machine (SVM) and performance of apnea events detection was evaluated. Also, a multi-classification algorithm based on the modified Hausdorff distance was proposed to recognize sinus rhythm and four arrhythmias highly related with SA. RESULTS The feature set composed of meanPP, SDPP, RMSSD, meanAm, and meank1 could provide a satisfactory balance between the performance and complexity of the algorithm for OSA detection. Also, the arrhythmia classification algorithm achieves the average sensitivity, specificity and accuracy of 83.79%, 95.91% and 93.47%, respectively in the classification of all four types of arrhythmia and regular rhythm. CONCLUSION Single channel PPG-based OSA detection and arrhythmia classification in this study can provide a feasible and promising approach for the early screening and diagnosis of OSA and OSA-related arrhythmias.
Collapse
Affiliation(s)
- Xiang Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,National Engineering Research Center for Healthcare Devices Guangzhou, Guangdong, China.,The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
| | - Jiahao Huang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,National Engineering Research Center for Healthcare Devices Guangzhou, Guangdong, China.,The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
| | - Feifei Luo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Shang Gao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Min Xi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jin Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China.,National Engineering Research Center for Healthcare Devices Guangzhou, Guangdong, China.,The Key Laboratory of Neuro-informatics and Rehabilitation Engineering of Ministry of Civil Affairs, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Mitchell KJ, Schwarzwald CC. Heart rate variability analysis in horses for the diagnosis of arrhythmias. Vet J 2020; 268:105590. [PMID: 33468305 DOI: 10.1016/j.tvjl.2020.105590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022]
Abstract
Heart rate variability (HRV) analysis has been performed on ECG-derived data sets for more than 170 years but is currently undergoing a rapid evolution, thanks to the expansion of the human and veterinary medical technology sector. Traditional HRV analysis was initially performed to identify changes in vago-sympathetic balance, while the most recent focus has expanded to include the use of complex computer algorithms, neural networks and machine learning technology to identify cardiac arrhythmias, particularly atrial fibrillation (AF). Some of these techniques have recently been translated for use in the field of equine cardiology, with particular focus on improving the diagnosis of arrhythmias both at rest and during exercise. This review focuses on understanding the basic HRV variables and important factors to consider when collecting data for use in HRV analysis. In addition, the use of HRV analysis for the diagnosis of arrhythmias is discussed from human, small animal and equine perspectives. Finally, the future of HRV analysis is briefly introduced, including an overview of future developments in this rapidly expanding and exciting field.
Collapse
Affiliation(s)
- Katharyn J Mitchell
- Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland.
| | - Colin C Schwarzwald
- Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, Zurich, 8057, Switzerland
| |
Collapse
|
6
|
DeProspero DJ, Adin DB. Visual representations of canine cardiac arrhythmias with Lorenz (Poincaré) plots. Am J Vet Res 2020; 81:720-731. [PMID: 33112172 DOI: 10.2460/ajvr.81.9.720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To characterize the patterns associated with Lorenz plots (LPs) or Poincaré plots derived from the Holter recordings of dogs with various cardiac rhythms. ANIMALS 77 dogs with 24-hour Holter recordings. PROCEDURES A 1-hour period from the Holter recordings from each of 20 dogs without arrhythmias and from each of 57 dogs with arrhythmias (10 each with supraventricular premature complexes, complex supraventricular ectopy, ventricular premature complexes, complex ventricular ectopy, and atrial fibrillation, and 7 with high-grade second-degree atrioventricular block) were used to generate the LPs. Patterns depicted in the LPs were described. RESULTS Arrhythmia-free Holter recordings yielded LPs with a Y-shaped pattern and variable silent zones. Recordings with single premature complexes yielded LPs with double side and triple side lobes. Complex ectopy was denoted by dots clustered in the lower left corner of the LPs. The LPs of recordings with atrial fibrillation had fan patterns consistent with a nonlinear relationship between atrial electrical impulses and atrioventricular nodal conduction. The recordings with atrioventricular block yielded LPs with island patterns consistent with variable atrioventricular nodal conduction. CONCLUSIONS AND CLINICAL RELEVANCE Distinct LP patterns were identified for common cardiac rhythms of dogs, supportive of nonrandom mechanisms as the cause of most rhythms. Visual interpretation of an LP generated from a Holter recording may aid in determining the arrhythmia type and understanding the arrhythmia's mechanism in dogs and other species.
Collapse
|
7
|
Moïse NS, Flanders WH, Pariaut R. Beat-to-Beat Patterning of Sinus Rhythm Reveals Non-linear Rhythm in the Dog Compared to the Human. Front Physiol 2020; 10:1548. [PMID: 32038271 PMCID: PMC6990411 DOI: 10.3389/fphys.2019.01548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023] Open
Abstract
The human and dog have sinus arrhythmia; however, the beat-to-beat interval changes were hypothesized to be different. Geometric analyses (R–R interval tachograms, dynamic Poincaré plots) to examine rate changes on a beat-to-beat basis were analyzed along with time and frequency domain heart rate variability from 40 human and 130 canine 24-h electrocardiographic recordings. Humans had bell-shaped beat-interval distributions, narrow interval bands across time with continuous interval change and linear changes in rate. In contrast, dogs had skewed non-singular beat distributions, wide interval bands {despite faster average heart rate of dogs [mean (range); 81 (64–119)] bpm compared to humans [74.5 (59–103) p = 0.005]} with regions displaying a paucity of intervals (zone of avoidance) and linear plus non-linear rate changes. In the dog, dynamic Poincaré plots showed linear rate changes as intervals prolonged until a point of divergence from the line of identity at a mean interval of 598.5 (95% CI: 583.5–613.5) ms (bifurcation interval). The dog had bimodal beat distribution during sleep with slower rates and greater variability than during active hours that showed singular interval distributions, higher rates and less variability. During sleep, Poincaré plots of the dog had clustered or branched patterns of intervals. A slower rate supported greater parasympathetic modulation with a branched compared to the clustered distribution. Treatment with atropine eliminated the non-linear patterns, while hydromorphone shifted the bifurcated branching and beat clustering to longer intervals. These results demonstrate the unique non-linear nature of beat-to-beat variability in the dog compared to humans with increases in interval duration (decrease heart rate). These results provoke the possibility that changes are linear with a dominant sympathetic modulation and non-linear with a dominant parasympathetic modulation. The abrupt bifurcation, zone of avoidance and beat-to-beat patterning are concordant with other studies demonstrating the development of exit block from the sinus node with parasympathetic modulation influencing not only the oscillation of the pacing cells, but conduction to the atria. Studies are required to associate the in vivo sinus node beat patterns identified in this study to the mapping of sinus impulse origin and exit from the sinus node.
Collapse
Affiliation(s)
- N Sydney Moïse
- College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Wyatt H Flanders
- Department of Physics, University of Washington, Seattle, WA, United States
| | - Romain Pariaut
- College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|