1
|
Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, Zhang R, Zhao Z, Zhu Q, An B, Wang Q, Chen B, Leung ELH, Wu Q. Anoikis-Associated Lung Cancer Metastasis: Mechanisms and Therapies. Cancers (Basel) 2022; 14:cancers14194791. [PMID: 36230714 PMCID: PMC9564242 DOI: 10.3390/cancers14194791] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Anoikis is a programmed cell death process resulting from the loss of interaction between cells and the extracellular matrix. Therefore, it is necessary to overcome anoikis when tumor cells acquire metastatic potential. In lung cancer, the composition of the extracellular matrix, cell adhesion-related membrane proteins, cytoskeletal regulators, and epithelial–mesenchymal transition are involved in the process of anoikis, and the initiation of apoptosis signals is a critical step in anoikis. Inversely, activation of growth signals counteracts anoikis. This review summarizes the regulators of lung cancer-related anoikis and explores potential drug applications targeting anoikis. Abstract Tumor metastasis occurs in lung cancer, resulting in tumor progression and therapy failure. Anoikis is a mechanism of apoptosis that combats tumor metastasis; it inhibits the escape of tumor cells from the native extracellular matrix to other organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat lung cancer. Several natural and synthetic products exhibit the pro-anoikis potential in lung cancer cells and in vivo models. These products include artonin E, imperatorin, oroxylin A, lupalbigenin, sulforaphane, renieramycin M, avicequinone B, and carbenoxolone. This review summarizes the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in lung cancer metastasis and discusses the therapeutic potential of targeting anoikis in the treatment of lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhijie Luo
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Lin
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinbing Sui
- School of Pharmacy, Department of Medical Oncology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ruonan Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianru Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bo An
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bi Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou 510006, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| |
Collapse
|
2
|
Long A, Crouse A, Kesterson RA, Might M, Wallis D. Functional characterization and potential therapeutic avenues for variants in the NTRK2 gene causing developmental and epileptic encephalopathies. Am J Med Genet B Neuropsychiatr Genet 2022; 189:37-47. [PMID: 34889524 DOI: 10.1002/ajmg.b.32882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 01/11/2023]
Abstract
Variants within the Neurotrophic Tyrosine Kinase Receptor Type 2 (NTRK2) gene have been discovered to play a role in developmental and epileptic encephalopathies, a group of debilitating conditions for which little is known about cause or treatment. Here, we determine the functional consequences of two variants: p.Tyr434Cys (Y434C) (located in the transmembrane domain) and p.Thr720Ile (T720I) (located in the catalytic domain). Wild-type and variant cDNAs were constructed and transfected into HEK293 cells. In cell culture, variant Y434C exhibited ligand-independent activation of tropomyosin-related kinase B (TRKB) signaling with an associated abnormal response to brain-derived neurotrophic factor (BDNF) stimulation and increased levels of phosphorylated extracellular signal-regulated kinase (ERK) and ETS like-1 protein (ELK1) activity. Expression of variant T720I resulted in decreased TRKB signaling with reduced mTor activity as determined by decreased levels of phosphorylated S6. With the deleterious mechanisms characterized, we utilized mediKanren (a novel artificial intelligence tool) to identify therapeutics to compensate for the pathological effects. Downregulation of TRKB through inhibition with mediKanren-predicted compound 1NM-PP1 led to decreased MEK activity. Upregulation of TRKB signaling by mediKanren-predicted valproic acid led to subsequent increase of mTor activity. Overall, our results provide further characterization of the pathogenicity of these two variants in the NTRK2 gene. Indeed, Y434C is the first patient-specific NTRK2 variant with demonstrated hypermorphic activity. Furthermore, we observed that variants Y434C and T720I result in distinct functional consequences that require distinct therapeutic strategies. These data suggest the possibility that unique mutations within different regions of the NTRK2 gene results in separate clinical presentations, representing distinct genetic disorders requiring unique therapeutics.
Collapse
Affiliation(s)
- Ashlee Long
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Andrew Crouse
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Matthew Might
- Personalized Medicine Institute, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Deeann Wallis
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Gomez DR, Byers LA, Nilsson M, Diao L, Wang J, Li L, Tong P, Hofstad M, Saigal B, Wistuba I, Kalhor N, Swisher S, Fan Y, Hong WK, Suraokar M, Behrens C, Moran C, Heymach JV. Integrative proteomic and transcriptomic analysis provides evidence for TrkB (NTRK2) as a therapeutic target in combination with tyrosine kinase inhibitors for non-small cell lung cancer. Oncotarget 2018; 9:14268-14284. [PMID: 29581842 PMCID: PMC5865668 DOI: 10.18632/oncotarget.24361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
While several molecular targets have been identified for adenocarcinoma (ACA) of the lung, similar drivers with squamous cell carcinoma (SCC) are sparse. We compared signaling pathways and potential therapeutic targets in lung SCC and ACA tumors using reverse phase proteomic arrays (RPPA) from two independent cohorts of resected early stage NSCLC patients: a testing set using an MDACC cohort (N=140) and a validation set using the Cancer Genome Atlas (TCGA) cohorts. We identified multiple potentially targetable proteins upregulated in SCC, including NRF2, Keap1, PARP, TrkB, and Chk2. Of these potential targets, we found that TrkB also had significant increases in gene expression in SCC as compared to adenocarcinoma. Thus, we next validated the upregulation of TrkB both in vitro and in vivo and found that it was constitutively expressed at high levels in a subset of SCC cell lines. Furthermore, we found that TrkB inhibition suppressed tumor growth, invasiveness and sensitized SCC cells to tyrosine kinase EGFR inhibition in a cell-specific manner.
Collapse
Affiliation(s)
- Daniel Richard Gomez
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren Averett Byers
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Monique Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lerong Li
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pan Tong
- Department of Bioinformatics and Computational Biology, Division of Quantitative Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mia Hofstad
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Babita Saigal
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neda Kalhor
- Department of Pathology Administration, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Youhong Fan
- Department of Pathology Administration, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Waun Ki Hong
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Milind Suraokar
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| | - Cesar Moran
- Department of Pathology Administration, Division of Pathology and Laboratory Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Victor Heymach
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Novel pharmacologic targeting of tight junctions and focal adhesions in prostate cancer cells. PLoS One 2014; 9:e86238. [PMID: 24497940 PMCID: PMC3908921 DOI: 10.1371/journal.pone.0086238] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/12/2013] [Indexed: 12/18/2022] Open
Abstract
Cancer cell resistance to anoikis driven by aberrant signaling sustained by the tumor microenvironment confers high invasive potential and therapeutic resistance. We recently generated a novel lead quinazoline-based Doxazosin® derivative, DZ-50, which impairs tumor growth and metastasis via anoikis. Genome-wide analysis in the human prostate cancer cell line DU-145 identified primary downregulated targets of DZ-50, including genes involved in focal adhesion integrity (fibronectin, integrin-α6 and talin), tight junction formation (claudin-11) as well as insulin growth factor binding protein 3 (IGFBP-3) and the angiogenesis modulator thrombospondin 1 (TSP-1). Confocal microscopy demonstrated structural disruption of both focal adhesions and tight junctions by the downregulation of these gene targets, resulting in decreased cell survival, migration and adhesion to extracellular matrix (ECM) components in two androgen-independent human prostate cancer cell lines, PC-3 and DU-145. Stabilization of cell-ECM interactions by overexpression of talin-1 and/or exposing cells to a fibronectin-rich environment mitigated the effect of DZ-50. Loss of expression of the intracellular focal adhesion signaling effectors talin-1 and integrin linked kinase (ILK) sensitized human prostate cancer to anoikis. Our findings suggest that DZ-50 exerts its antitumor effect by targeting the key functional intercellular interactions, focal adhesions and tight junctions, supporting the therapeutic significance of this agent for the treatment of advanced prostate cancer.
Collapse
|