1
|
Sharma M, Sudha Ambadipudi SSSS, Kumar Chouhan N, Lakshma Nayak V, Pabbaraja S, Balaji Andugulapati S, Sistla R. Design, synthesis and biological evaluation of novel cationic liposomes loaded with melphalan for the treatment of cancer. Bioorg Med Chem Lett 2024; 97:129549. [PMID: 37952597 DOI: 10.1016/j.bmcl.2023.129549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Therapeutically active lipids in drug delivery systems offer customization for enhanced pharmaceutical and biological effects, improving safety and efficacy. Biologically active N, N-didodecyl-3,4-dimethoxy-N-methylbenzenaminium lipid (Q) was synthesized and employed to create a liposome formulation (FQ) encapsulating melphalan (M) through a thin film hydration method. Synthesized cationic lipids and their liposomal formulation underwent characterization and assessment for additive anti-cancer effects on myeloma and melanoma cancer cell lines. These effects were evaluated through various studies, including cytotoxicity assessments, cell cycle arrest analysis, apoptosis measurements, mitochondrial membrane potential depolarization, DNA fragmentation, and a significant reduction in tumorigenic potential, as evidenced by a decrease in both the number and percentage area of cancer spheroids.
Collapse
Affiliation(s)
- Mani Sharma
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S S S S Sudha Ambadipudi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Neeraj Kumar Chouhan
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - V Lakshma Nayak
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India
| | - Srihari Pabbaraja
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Sai Balaji Andugulapati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Ramakrishna Sistla
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology (IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Ferretti V, Matos CP, Canelas C, Pessoa JC, Tomaz AI, Starosta R, Correia I, León IE. New ternary Fe(III)-8-hydroxyquinoline-reduced Schiff base complexes as selective anticancer drug candidates. J Inorg Biochem 2022; 236:111961. [PMID: 36049258 DOI: 10.1016/j.jinorgbio.2022.111961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/04/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
Due to the growing prevalence of cancer diseases, new therapeutic options are urgently needed, and drugs based on metal ions other than platinum are alternatives with exciting possibilities. We report the synthesis, characterization and biological effect of mixed-ligand Fe(III)-aminophenolate complexes derived from salicylaldehyde and L-tryptophan with quinoline derivatives as co-ligands, namely 8-hydroxyquinoline (8HQ), [Fe(L)(8HQ)(H2O)] (1) and its 5-cloro derivative (Cl8HQ), [Fe(L)(Cl8HQ)(H2O)] (2). The complex bearing the aminophenolate and lacking the quinoline co-ligand, [Fe(L)(Cl)(H2O)2] (3), was prepared for comparison. The analytical and spectroscopic characterization revealed that 1 and 2 are octahedral Fe(III) complexes with the aminophenolate acting as a dianionic tridentate ligand and 8HQ co-ligands as bidentate chelates. Spectroscopic techniques and molecular docking studies were used to evaluate the ability of these complexes to bind bovine serum albumin (BSA) and calf thymus DNA. Complex 2 [Fe(L)(Cl8HQ)(H2O)] was the one showing higher affinity for both biomolecules. Cell viability was assessed in breast, colorectal and bone human cancer cell lines. 1 and 2 were found to be more active than cisplatin in all cell lines tested. A non-tumoral fibroblast line (L929, mouse non-tumoral fibroblasts) was used to evaluate selectivity. The results evidence that 2 shows much higher selectivity than 1 in all cell lines tested, but particularly in bone cancer cells in which selectivity index (SI) values are 8.0 and 18.8 for 1 and 2, respectively.
Collapse
Affiliation(s)
- Valeria Ferretti
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Cristina P Matos
- Centro de Ciências e Tecnologias Nucleares and Departamento de Ciências e Engenharia Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal; Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Catarina Canelas
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Radosław Starosta
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Isabel Correia
- Centro de Química Estrutural, Institute of Molecular Sciences, and Departamento de Engenharia Química, Instituto Superior Técnico, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina.
| |
Collapse
|
3
|
Gozzi M, Murganic B, Drača D, Popp J, Coburger P, Maksimović‐Ivanić D, Mijatović S, Hey‐Hawkins E. Quinoline-Conjugated Ruthenacarboranes: Toward Hybrid Drugs with a Dual Mode of Action. ChemMedChem 2019; 14:2061-2074. [PMID: 31675152 PMCID: PMC6973020 DOI: 10.1002/cmdc.201900349] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/19/2019] [Indexed: 12/26/2022]
Abstract
The role of autophagy in cancer is often complex, ranging from tumor-promoting to -suppressing effects. In this study, two novel hybrid molecules were designed, containing a ruthenacarborane fragment conjugated with a known modulator of autophagy, namely a quinoline derivative. The complex closo-[3-(η6 -p-cymene)-1-(quinolin-8-yl-acetate)-3,1,2-RuC2 B9 H10 ] (4) showed a dual mode of action against the LN229 (human glioblastoma) cell line, where it inhibited tumor-promoting autophagy, and strongly inhibited cell proliferation, de facto blocking cellular division. These results, together with the tendency to spontaneously form nanoparticles in aqueous solution, make complex 4 a very promising drug candidate for further studies in vivo, for the treatment of autophagy-prone glioblastomas.
Collapse
Affiliation(s)
- Marta Gozzi
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Blagoje Murganic
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Dijana Drača
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - John Popp
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Peter Coburger
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| | - Danijela Maksimović‐Ivanić
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Sanja Mijatović
- National Institute of Republic of Serbia Department of Immunology Institute for Biological Research “Siniša Stanković”University of BelgradeBul. despota Stefana 14211060BelgradeSerbia
| | - Evamarie Hey‐Hawkins
- Institute of Inorganic ChemistryLeipzig UniversityJohannisallee 2904103LeipzigGermany
| |
Collapse
|
4
|
Weatherbee JL, Kraus JL, Ross AH. ER stress in temozolomide-treated glioblastomas interferes with DNA repair and induces apoptosis. Oncotarget 2018; 7:43820-43834. [PMID: 27286262 PMCID: PMC5190062 DOI: 10.18632/oncotarget.9907] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a deadly grade IV brain tumor. Radiation in combination with temozolomide (TMZ), the current chemotherapeutic for GBMs, only provides 12–14 months survival post diagnosis. Because GBMs are dependent on both activation of the DNA damage pathway and the endoplasmic reticulum (ER) stress response, we asked if a novel ER stress inducing agent, JLK1486, increases the efficacy of TMZ. We found that the combination of TMZ+JLK1486 resulted in decreased proliferation in a panel of adherent GBM cells lines and reduced secondary sphere formation in non-adherent and primary lines. Decreased proliferation correlated with increased cell death due to apoptosis. We found prolonged ER stress in TMZ+JLK1486 treated cells that resulted in sustained activation of the unfolded protein response (UPR) through increased levels of BiP, ATF4, and CHOP. In addition, TMZ+JLK1486 treatment caused decreased RAD51 levels, impairing DNA damage repair. Furthermore, we found delayed time to tumor doubling in TMZ+JLK1486 treated mice. Our data shows that the addition of JLK1486 to TMZ increases the efficaciousness of the treatment by decreasing proliferation and inducing cell death. We propose increased cell death is due to two factors. One, prolonged ER stress driving the expression of the pro-apoptotic transcription factor CHOP, and, second, unresolved DNA double strand breaks, due to decreased RAD51 levels. The combination of TMZ+JLK1486 is a potential novel therapeutic combination and suggests an inverse relationship between unresolved ER stress and the DNA damage response pathway.
Collapse
Affiliation(s)
- Jessica L Weatherbee
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jean-Louis Kraus
- Developmental Biology Institute of Marseille-Luminy (IBDML), Aix-Marseille University (AMU) and CNRS, UMR 7288, IBDML, Case 907, Marseille, France
| | - Alonzo H Ross
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Jin RZ, Zhang Y, Li YL, Wang XS. An Efficient Synthesis of Fused Polycyclic Triazolo[4,5-a]acridine Derivatives under Catalyst-Free Conditions with High Regioselectivity. Polycycl Aromat Compd 2016. [DOI: 10.1080/10406638.2015.1042553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Rong-Zhang Jin
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu, P. R. China
| | - Yu-Ling Li
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu, P. R. China
| | - Xiang-Shan Wang
- School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Green Synthesis for Functional Materials, Jiangsu Normal University, Xuzhou Jiangsu, P. R. China
| |
Collapse
|