1
|
Yazdani M. Uncontrolled Oxygen Levels in Cultures of Retinal Pigment Epithelium: Have We Missed the Obvious? Curr Eye Res 2022; 47:651-660. [PMID: 35243933 DOI: 10.1080/02713683.2022.2050264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Retinal pigment epithelium (RPE) is the outermost layer of retina located between the photoreceptor cells and the choroid. This highly-polarized monolayer provides critical support for the functioning of the other parts of the retina, especially photoreceptors. Methods of culturing RPE have been under development since its establishment in 1920s. Despite considering various factors, oxygen (O2) levels in RPE microenvironments during culture preparation and experimental procedure have been overlooked. O2 is a crucial parameter in the cultures, and therefore, maintaining RPE cells at O2 levels different from their native environment (70-90 mm Hg of O2) could have unintended consequences. Owing to the importance of the topic, lack of sufficient discussion in the literature and to encourage future research, this paper will focus on uncontrolled O2 level in cultures of RPE cells.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027 Oslo, Norway
| |
Collapse
|
2
|
Hu L, Guo J, Zhou L, Zhu S, Wang C, Liu J, Hu S, Yang M, Lin C. Hydrogen Sulfide Protects Retinal Pigment Epithelial Cells from Oxidative Stress-Induced Apoptosis and Affects Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8868564. [PMID: 33488939 PMCID: PMC7790554 DOI: 10.1155/2020/8868564] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Age-related macular degeneration (AMD) is a major cause of visual impairment and blindness among the elderly. AMD is characterized by retinal pigment epithelial (RPE) cell dysfunction. However, the pathogenesis of AMD is still unclear, and there is currently no effective treatment. Accumulated evidence indicates that oxidative stress and autophagy play a crucial role in the development of AMD. H2S is an antioxidant that can directly remove intracellular superoxide anions and hydrogen peroxide. The purpose of this study is to investigate the antioxidative effect of H2S in RPE cells and its role in autophagy. The results show that exogenous H2S (NaHS) pretreatment effectively reduces H2O2-induced oxidative stress, oxidative damage, apoptosis, and inflammation in ARPE-19 cells. NaHS pretreatment also decreased autophagy levels raised by H2O2, increased cell viability, and ameliorated cell morphological damage. Interestingly, the suppression of autophagy by its inhibitor 3-MA showed an increase of cell viability, amelioration of morphology, and a decrease of apoptosis. In summary, oxidative stress causes ARPE-19 cell injury by inducing cell autophagy. However exogenous H2S is shown to attenuate ARPE-19 cell injury, decrease apoptosis, and reduce the occurrence of autophagy-mediated by oxidative stress. These findings suggest that autophagy might play a crucial role in the development of AMD, and exogenous H2S has a potential value in the treatment of AMD.
Collapse
Affiliation(s)
- Liming Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jia Guo
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Li Zhou
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sen Zhu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chunming Wang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiawei Liu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shanshan Hu
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mulin Yang
- School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Changjun Lin
- School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Caetano Dos Santos FL, Laforest T, Künzi M, Kowalczuk L, Behar-Cohen F, Moser C. Fully automated detection, segmentation, and analysis of in vivo RPE single cells. Eye (Lond) 2020; 35:1473-1481. [PMID: 32555522 DOI: 10.1038/s41433-020-1036-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/09/2020] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE To develop a fully automated method of retinal pigmented epithelium (RPE) cells detection, segmentation and analysis based on in vivo cellular resolution images obtained with the transscleral optical phase imaging method (TOPI). METHODS Fourteen TOPI-RPE images from 11 healthy individuals were analysed. The developed image processing method encompassed image filtering and normalisation, detection and removal of blood vessels, cell detection and cell membrane segmentation. The produced measures were cellular density of RPE layer, cell area, number of neighbouring cells, eccentricity, circularity and solidity. In addition, we proposed coefficient of variation (CV) of RPE cellular membrane (CMDCV) and the solidity of the RPE cell membrane-shape as new metrics for the assessment of RPE single cells. RESULTS The observed median cellular density of the RPE layer was 3743 cells/µm2 (interquartile rate (IQR) 1687), with a median observed RPE cell area of 193 µm2 (IQR 141). The mean number of neighbouring cells was 5.22 (standard deviation (SD) 0.05) per RPE cell. The mean RPE cell eccentricity was 0.67 (SD 0.02), median circularity 0.83 (IQR 0.01), and median solidity 0.92 (IQR 0.00). The median CMDCV was 0.19 (IQR 0.02). The method is characterised by a median image processing and analysis time of 48 sec (IQR 12) per image. CONCLUSIONS The present study provides the first fully automated quantitative assessment of human RPE single cells in vivo. The method provides a baseline for future research in the field of clinical ophthalmology, enabling characterisation and diagnostics of retinal diseases at the single-cell level.
Collapse
Affiliation(s)
| | - Timothé Laforest
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Laura Kowalczuk
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Ophthalmology, Jules-Gonin Eye Hospital, Fondation Asile des aveugles, University of Lausanne, Lausanne, Switzerland
| | - Francine Behar-Cohen
- INSERM UMR_S 1138, Team 17, Centre de Recherche des Cordeliers, University of Pierre et Marie Curie, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Department of Ophthalmology, Ophthalmopole, Cochin Hospital, Assistance Publique, Hôpitaux de Paris, Paris, France
| | - Christophe Moser
- Laboratory of Applied Photonic Devices (LAPD), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
4
|
Swamy V, McGaughey D. Eye in a Disk: eyeIntegration Human Pan-Eye and Body Transcriptome Database Version 1.0. Invest Ophthalmol Vis Sci 2019; 60:3236-3246. [PMID: 31343654 PMCID: PMC6660187 DOI: 10.1167/iovs.19-27106] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose We develop an accessible and reliable RNA sequencing (RNA-seq) transcriptome database of healthy human eye tissues and a matching reactive web application to query gene expression in eye and body tissues. Methods We downloaded the raw sequence data for 1375 RNA-seq samples across 54 tissues in the Genotype-Tissue Expression (GTEx) project as a noneye reference set. We then queried several public repositories to find all healthy, nonperturbed, human eye-related tissue RNA-seq samples. The 916 eye and 1375 GTEx samples were sent into a Snakemake-based reproducible pipeline we wrote to quantify all known transcripts and genes, removes samples with poor sequence quality and mislabels, normalizes expression values across each tissue, perform 882 differential expression tests, calculate GO term enrichment, and output all as a single SQLite database file: the Eye in a Disk (EiaD) dataset. Furthermore, we rewrote the web application eyeIntegration (available in the public domain at https://eyeIntegration.nei.nih.gov) to display EiaD. Results The new eyeIntegration portal provides quick visualization of human eye-related transcriptomes published to date by database version, gene/transcript, 19 eye tissues, and 54 body tissues. As a test of the value of this unified pan-eye dataset, we showed that fetal and organoid retina are highly similar at a pan-transcriptome level, but display distinct differences in certain pathways and gene families, such as protocadherin and HOXB family members. Conclusions The eyeIntegration v1.0 web app serves the pan-human eye and body transcriptome dataset, EiaD. This offers the eye community a powerful and quick means to test hypotheses on human gene and transcript expression across 54 body and 19 eye tissues.
Collapse
Affiliation(s)
- Vinay Swamy
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David McGaughey
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
5
|
Shao Z, Wang H, Zhou X, Guo B, Gao X, Xiao Z, Liu M, Sha J, Jiang C, Luo Y, Liu Z, Li S. Spontaneous generation of a novel foetal human retinal pigment epithelium (RPE) cell line available for investigation on phagocytosis and morphogenesis. Cell Prolif 2017; 50. [PMID: 28924976 PMCID: PMC6529143 DOI: 10.1111/cpr.12386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/18/2017] [Indexed: 12/16/2022] Open
Abstract
Objectives Primary retinal pigment epithelium (RPE) cells have a limited capacity to re‐establish epithelial morphology and to maintain native RPE function in vitro, and all commercially available RPE cell lines have drawbacks of morphology or function; therefore, the establishment of new RPE cell lines with typical characteristics of RPE would be helpful in further understanding of their physiological and pathological mechanisms. Here, we firstly report a new spontaneously generated RPE line, fhRPE‐13A, from a 13‐week aborted foetus. We aimed to investigate its availability as a RPE model. Materials and methods RNA‐seq data were mapped to the human genome assembly hg19. Global transcriptional data were analysed by Weighted Gene Co‐expression Network Analysis (WGCNA) and differentially expressed genes (DEGs). The morphology and molecular characteristics were examined by immunofluorescence, transmission electron micrographs, PCR and western blot. Photoreceptor outer segments (POS) phagocytosis assay and transepithelial resistance measurement (TER) were performed to assess phagocytic activity and barrier function, respectively. Results The fhRPE‐13A cells showed typical polygonal morphology and normal biological processes of RPE. Meanwhile they were capable of POS phagocytosis in vitro, and the expression level of TYR and TYRP1 were significantly higher than that in ARPE‐19 cells. Conclusions The foetal human RPE line fhRPE‐13A is a valuable system for researching phagocytosis and morphogenesis of RPE in vitro.
Collapse
Affiliation(s)
- Zhihua Shao
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyun Wang
- Shanghai First Maternity and Infant Health Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuejian Zhou
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Baosen Guo
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Xuehu Gao
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Zengrong Xiao
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Meng Liu
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Jihong Sha
- Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Chunlian Jiang
- College of Life Sciences, Nanchang University, Nanchang, China
| | - Yuping Luo
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhixue Liu
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Siguang Li
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|