1
|
Liang Y, Meng J, Yu Z, Guo Y, Zhang X, Yan Y, Du S, Jin S, Li J, Yang H, Zhang X, Liu Z, Li L, Xie J. Ru single-atom nanozymes targeting ROS-ferroptosis pathways for enhanced endometrial regeneration in intrauterine adhesion therapy. Biomaterials 2025; 315:122923. [PMID: 39489016 DOI: 10.1016/j.biomaterials.2024.122923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Intrauterine adhesion (IUA) presents a significant challenge in gynecology, characterized by excessive fibrosis and compromised reproductive function, leading to severe infertility. Although biocompatible hydrogels integrated with stem cells offer a promising approach for IUA therapy, clinical applications remain limited. Recent studies have highlighted the role of ferroptosis and reactive oxygen species (ROS) in IUA pathogenesis, yet strategies targeting ferroptosis through antioxidant stress are underexplored. This study investigates the therapeutic effects and mechanisms of a Ru-Single-Atom Nanozyme (Ru-SAN) incorporated into chitosan hydrogel for treating IUA. Ru-SAN, which mimics the enzyme activities of catalase, superoxide dismutase, and glutathione peroxidase, effectively clears excess ROS and shows promise in treating oxidative stress-induced diseases. The results demonstrate the superior antioxidative capabilities of Ru-SAN, significantly suppressing the ROS-ferroptosis cycle at the injury site. This creates a favorable microenvironment for post-injury repair by inhibiting inflammation, enhancing mesenchymal-to-epithelial transformation, promoting angiogenesis, and polarizing M2 macrophages. Importantly, it mitigates adverse repair outcomes from inflammation and excessive collagen fiber deposition, ultimately restoring uterine glandular structures and thickness, thereby achieving the ultimate goal of restoring fertility and live birth rates. In conclusion, our study delineates a pioneering therapeutic approach leveraging the antioxidant properties of Ru-SAN to target ferroptosis, thereby offering an efficacious treatment for IUA.
Collapse
Affiliation(s)
- Yuxiang Liang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Shanxi Key Laboratory of Human Disease and Animal Models, Experimental Animal Center of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Jian Meng
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China; Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Zhaowei Yu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuqian Guo
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yujia Yan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Shaobo Du
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Shanshan Jin
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hailan Yang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaozheng Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Liping Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Department of Obstetrics and Gynecology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
2
|
Liu X, Yang L, Guan K, Chen Z, Yang H. CSE1L Silencing Enhances Cytarabine-mediated Cytotoxicity in Acute Myeloid Leukemia. Indian J Hematol Blood Transfus 2024; 40:629-637. [PMID: 39469152 PMCID: PMC11512944 DOI: 10.1007/s12288-024-01773-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/08/2024] [Indexed: 10/30/2024] Open
Abstract
Purpose This study aims to investigate the increased toxicity of Cytarabine (Ara-c) by knockdown of chromosome segregation 1-like (CSE1L) in acute myeloid leukemia(AML) cells(Kasumi-1, U937, and THP-1 cells) and to explore its possible mechanisms. Methods Target gene silencing was achieved using the shRNA-mediated lentivirus method. Apoptosis was identified using the Annexin V PE/7-AAD double-staining assay. Cell viability was assessed with the Cell Counting Kit-8 (CCK-8) assay. Protein expression was detected by Western blotting. Results In vitro, knocking down CSE1L promoted caspase-3 and caspase-9 proteins expression and induced apoptosis in AML cells. Knockdown of CSE1L enhanced AML cells' sensitivity to Ara-c. knockdown of CSE1L reduced the expression levels of p-JKA2 and p-STAT3 proteins, while no significant difference was observed in the expression levels of total JAK2 and STAT3 proteins. Furthermore, JAK2 overexpression reversed the increase in Ara-c toxicity to AML cells caused by CSE1L knockdown. Conclusion In conclusion, our study reveals that CSE1L is a potential therapeutic target for overcoming Ara-c resistance in AML cells. Thus, we have gained new insights into the oncogenic process of CSE1L in AML cells and raised the prospect of knockdown of CSE1L in AML in combination with cytarabine-targeted therapy.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| | - Lin Yang
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| | - Kunping Guan
- Department of Laboratory Medicine, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhen Chen
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| | - Hua Yang
- Department of Laboratory Medicine, Suining Municipal Hospital of TCM, Suining, China
| |
Collapse
|
3
|
Hu L, Hong T, He Y, Wang H, Cao J, Pu D, Gao L, Gao C, Cui Y, Wu J, Tan R. Chromosome Segregation-1-like Gene Participates in Ferroptosis in Human Ovarian Granulosa Cells via Nucleocytoplasmic Transport. Antioxidants (Basel) 2024; 13:911. [PMID: 39199156 PMCID: PMC11352033 DOI: 10.3390/antiox13080911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Premature ovarian insufficiency (POI) is defined as the depletion of ovarian function before the age of 40 years. The global prevalence of POI is 3.5%. To date, genetic factors account for 23.5% of the etiology of POI. Herein, a previously uncharacterized pathogenic homozygous variant of the chromosome segregation-1-like gene (CSE1L) was identified in POI patients via targeted panel sequencing. It is reported that dysregulated iron metabolism is involved in many reproductive endocrine disorders; however, its precise role in POI remains obscure. In this study, we identified CSE1L as a potential candidate gene that plays an important role in maintaining iron homeostasis. Deficiency of CSE1L led to ferroptosis in human granulosa cells, which was confirmed by transmission electron microscopy. Mechanistically, coimmunoprecipitation identified the direct interaction between CSE1L and FoxO1. Inhibition of CSE1L led to the excessive accumulation of FoxO1 in the nucleus via nucleocytoplasmic transport. Then, FoxO1 bound to the promoter region of NCOA4 and promoted its transcription, which was verified by a chromatin immunoprecipitation assay. Moreover, inhibition of CSE1L in cumulus cell monolayer could impede oocyte maturation, which might be associated with oxidative stress. Consequently, our study first revealed that CSE1L participated in ferroptosis in human ovarian granulosa cells via nucleocytoplasmic transportation, which might be helpful in revealing the molecular mechanism of CSE1L in the development of POI. Importantly, these findings might provide new insights into the application of ferroptosis inhibitors in the treatment of POI.
Collapse
Affiliation(s)
- Luanqian Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Tongtong Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Yuheng He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Huiyuan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Jinxiang Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Danhua Pu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Li Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Chao Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Yugui Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Jie Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| | - Rongrong Tan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China; (L.H.); (T.H.); (Y.H.); (H.W.); (J.C.); (D.P.); (L.G.); (C.G.); (Y.C.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing 210000, China
| |
Collapse
|
4
|
Pacheco RI, Cristo MI, Anjo SI, Silva AF, Sousa MI, Tavares RS, Sousa AP, Almeida Santos T, Moura-Ramos M, Caramelo F, Manadas B, Ramalho-Santos J, Amaral SG. New Insights on Sperm Function in Male Infertility of Unknown Origin: A Multimodal Approach. Biomolecules 2023; 13:1462. [PMID: 37892144 PMCID: PMC10605211 DOI: 10.3390/biom13101462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The global trend of rising (male) infertility is concerning, and the unidentifiable causes in half of the cases, the so-called unknown origin male infertility (UOMI), demands a better understanding and assessment of both external/internal factors and mechanisms potentially involved. In this work, it was our aim to obtain new insight on UOMI, specifically on idiopathic (ID) and Unexplained male infertility (UMI), relying on a detailed evaluation of the male gamete, including functional, metabolic and proteomic aspects. For this purpose, 1114 semen samples, from males in couples seeking infertility treatment, were collected at the Reproductive Medicine Unit from the Centro Hospitalar e Universitário de Coimbra (CHUC), from July 2018-July 2022. Based on the couples' clinical data, seminal/hormonal analysis, and strict eligibility criteria, samples were categorized in 3 groups, control (CTRL), ID and UMI. Lifestyle factors and anxiety/depression symptoms were assessed via survey. Sperm samples were evaluated functionally, mitochondrially and using proteomics. The results of Assisted Reproduction Techniques were assessed whenever available. According to our results, ID patients presented the worst sperm functional profile, while UMI patients were similar to controls. The proteomic analysis revealed 145 differentially expressed proteins, 8 of which were specifically altered in ID and UMI samples. Acrosin (ACRO) and sperm acrosome membrane-associated protein 4 (SACA4) were downregulated in ID patients while laminin subunit beta-2 (LAMB2), mannose 6-phosphate isomerase (MPI), ATP-dependent 6-phosphofructokinase liver type (PFKAL), STAR domain-containing protein 10 (STA10), serotransferrin (TRFE) and exportin-2 (XPO2) were downregulated in UMI patients. Using random forest analysis, SACA4 and LAMB2 were identified as the sperm proteins with a higher chance of distinguishing ID and UMI patients, and their function and expression variation were in accordance with the functional results. No alterations were observed in terms of lifestyle and psychological factors among the 3 groups. These findings obtained in an experimental setting based on 3 well-defined groups of subjects, might help to validate new biomarkers for unknown origin male infertility (ID and UMI) that, in the future, can be used to improve diagnostics and treatments.
Collapse
Affiliation(s)
- Rita I. Pacheco
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria I. Cristo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Andreia F. Silva
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Maria Inês Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Renata S. Tavares
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Ana Paula Sousa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
| | - Teresa Almeida Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Mariana Moura-Ramos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
- Eugin Coimbra, Rua Filipe Hodart 12, 3000-185 Coimbra, Portugal
- Center for Research in Neuropsychology and Cognitive and Behavioral Intervention, Faculty of Psychology and Educational Sciences, University of Coimbra, 3000-115 Coimbra, Portugal
- Clinical Psychology Unit, Centro Hospitalar e Universitário de Coimbra, 3000-075 Coimbra, Portugal
| | | | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - João Ramalho-Santos
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Gomes Amaral
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
5
|
Zigo M, Kerns K, Sutovsky P. The Ubiquitin-Proteasome System Participates in Sperm Surface Subproteome Remodeling during Boar Sperm Capacitation. Biomolecules 2023; 13:996. [PMID: 37371576 PMCID: PMC10296210 DOI: 10.3390/biom13060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Sperm capacitation is a complex process endowing biological and biochemical changes to a spermatozoon for a successful encounter with an oocyte. The present study focused on the role of the ubiquitin-proteasome system (UPS) in the remodeling of the sperm surface subproteome. The sperm surface subproteome from non-capacitated and in vitro capacitated (IVC) porcine spermatozoa, with and without proteasomal inhibition, was selectively isolated. The purified sperm surface subproteome was analyzed using high-resolution, quantitative liquid chromatography-mass spectrometry (LC-MS) in four replicates. We identified 1680 HUGO annotated proteins, out of which we found 91 to be at least 1.5× less abundant (p < 0.05) and 141 to be at least 1.5× more abundant (p < 0.05) on the surface of IVC spermatozoa. These proteins were associated with sperm capacitation, hyperactivation, metabolism, acrosomal exocytosis, and fertilization. Abundances of 14 proteins were found to be significantly different (p < 0.05), exceeding a 1.5-fold abundance between the proteasomally inhibited (100 µM MG132) and vehicle control (0.2% ethanol) groups. The proteins NIF3L1, CSE1L, NDUFB7, PGLS, PPP4C, STK39, and TPRG1L were found to be more abundant; while BPHL, GSN, GSPT1, PFDN4, STYXL1, TIMM10, and UBXN4 were found to be less abundant in proteasomally inhibited IVC spermatozoa. Despite the UPS having a narrow range of targets, it modulated sperm metabolism and binding by regulating susceptible surface proteins. Changes in CSE1L, PFDN4, and STK39 during in vitro capacitation were confirmed using immunocytochemistry, image-based flow cytometry, and Western blotting. The results confirmed the active participation of the UPS in the extensive sperm surface proteome remodeling that occurs during boar sperm capacitation. This work will help us to identify new pharmacological mechanisms to positively or negatively modulate sperm fertilizing ability in food animals and humans.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Peter Sutovsky
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Shi J, Qiao F, Ye M, Jiang T, Liu J, Zhang M, Xie G, Fok KL, Li X, Chen H. CSE1L/CAS regulates cell proliferation through CDK signalling in mouse spermatogenesis. Cell Prolif 2022; 55:e13334. [PMID: 36097754 PMCID: PMC9628239 DOI: 10.1111/cpr.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/09/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Jianwu Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Feng Qiao
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Mei Ye
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Ting Jiang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jianni Liu
- Medical Laboratory Department of Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Mengya Zhang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Gangcai Xie
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaofeng Li
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
7
|
Ye M, Chen Y, Liu J, Tian J, Wang X, Fok KL, Shi J, Chen H. Interfering with CSE1L/CAS inhibits tumour growth via C3 in triple-negative breast cancer. Cell Prolif 2022; 55:e13226. [PMID: 35403306 PMCID: PMC9136492 DOI: 10.1111/cpr.13226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Triple‐negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. However, the treatment regimens for TNBC are limited. Chromosome segregation 1‐like (CSE1L), also called cellular apoptosis susceptibility protein (CAS), is highly expressed in breast cancer and plays a crucial role in the progression of various tumours. However, the involvement of CAS in TNBC remains elusive. In this study, we showed that the expression of CAS was higher in TNBC samples than in non‐TNBC samples in the Gene Expression Omnibus database. Knockdown of CAS inhibited MDA‐MB‐231 cell growth, migration and invasion. Further RNA‐seq analysis revealed that complement pathway activity was significantly elevated. Of note, complement component 3 (C3), the key molecule in the complement pathway, was significantly upregulated, and the expression of C3 was negatively correlated with that of CAS in breast cancer. Lower C3 expression was related to poor prognosis. Interestingly, the expression level of C3 was positively correlated with the infiltration of multiple immune cells. Taken together, our findings suggest that CAS participates in the development of TNBC through C3‐mediated immune cell suppression and might constitute a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Mei Ye
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Yufei Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jianni Liu
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Jiawei Tian
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xunda Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Kin Lam Fok
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Hao Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
8
|
Salvi A, Young AN, Huntsman AC, Pergande MR, Korkmaz MA, Rathnayake RA, Mize BK, Kinghorn AD, Zhang X, Ratia K, Schirle M, Thomas JR, Brittain SM, Shelton C, Aldrich LN, Cologna SM, Fuchs JR, Burdette JE. PHY34 inhibits autophagy through V-ATPase V0A2 subunit inhibition and CAS/CSE1L nuclear cargo trafficking in high grade serous ovarian cancer. Cell Death Dis 2022; 13:45. [PMID: 35013112 PMCID: PMC8748433 DOI: 10.1038/s41419-021-04495-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/22/2022]
Abstract
PHY34 is a synthetic small molecule, inspired by a compound naturally occurring in tropical plants of the Phyllanthus genus. PHY34 was developed to have potent in vitro and in vivo anticancer activity against high grade serous ovarian cancer (HGSOC) cells. Mechanistically, PHY34 induced apoptosis in ovarian cancer cells by late-stage autophagy inhibition. Furthermore, PHY34 significantly reduced tumor burden in a xenograft model of ovarian cancer. In order to identify its molecular target/s, we undertook an unbiased approach utilizing mass spectrometry-based chemoproteomics. Protein targets from the nucleocytoplasmic transport pathway were identified from the pulldown assay with the cellular apoptosis susceptibility (CAS) protein, also known as CSE1L, representing a likely candidate protein. A tumor microarray confirmed data from mRNA expression data in public databases that CAS expression was elevated in HGSOC and correlated with worse clinical outcomes. Overexpression of CAS reduced PHY34 induced apoptosis in ovarian cancer cells based on PARP cleavage and Annexin V staining. Compounds with a diphyllin structure similar to PHY34 have been shown to inhibit the ATP6V0A2 subunit of V(vacuolar)-ATPase. Therefore, ATP6V0A2 wild-type and ATP6V0A2 V823 mutant cell lines were tested with PHY34, and it was able to induce cell death in the wild-type at 246 pM while the mutant cells were resistant up to 55.46 nM. Overall, our data demonstrate that PHY34 is a promising small molecule for cancer therapy that targets the ATP6V0A2 subunit to induce autophagy inhibition while interacting with CAS and altering nuclear localization of proteins.
Collapse
Affiliation(s)
- Amrita Salvi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Alexandria N Young
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Andrew C Huntsman
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Melissa A Korkmaz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | | | - Brittney K Mize
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiaoli Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Kiira Ratia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Markus Schirle
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jason R Thomas
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Scott M Brittain
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Claude Shelton
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Leslie N Aldrich
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Joanna E Burdette
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
9
|
Liu W, Zhou Z, Li Y, Xu J, Shen Y, Luo S, Zhou Y, Wu X, Zhao H, Beer DG, He Y, Chen G. CSE1L silencing impairs tumor progression via MET/STAT3/PD-L1 signaling in lung cancer. Am J Cancer Res 2021; 11:4380-4393. [PMID: 34659893 PMCID: PMC8493386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023] Open
Abstract
CSE1L is involved in the cancer progression of several types of cancer. Its expression status, potential oncogenic role and underlying mechanism in lung cancer, however, are unclear. Here, we investigated CSE1L expression in primary lung adenocarcinoma based on multiple datasets and then investigated its oncologic role in lung cancer. We also examined the potential molecular mechanisms of CSE1L in cancer progression. CSE1L levels were increased in cancer as compared to normal lung tissues. CSE1L expression was higher in poorly-differentiated late stage and lymph node positive metastatic tumors. Higher CSE1L level was correlated with worse patient outcome. Knockdown of CSE1L using siRNAs impaired cell proliferation, invasion, migration and induced cell apoptosis. Mechanistically, MET, STAT3 and PD-L1 proteins were decreased upon CSE1L silencing. These results suggest that CSE1L may affect tumor progression through MET/STAT3/PD-L1 signaling. CSE1L may have potential as a biomarker and therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Weijun Liu
- Department of Anorectal Disease, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and TechnologyKunming 650032, Yunnan, China
| | - Zhiqing Zhou
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yu Li
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Jiali Xu
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yang Shen
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Suisui Luo
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Yujie Zhou
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Xing Wu
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - Huijie Zhao
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| | - David G Beer
- Department of Surgery, University of Michigan Medical SchoolAnn Arbor 48109, MI, United States
| | - Yanli He
- School of Basic Medicine, Guangzhou University of Chinese MedicineGuangzhou 510006, Guangdong, China
| | - Guoan Chen
- School of Medicine, Southern University of Science and TechnologyShenzhen 518055, China
| |
Collapse
|
10
|
Luo Y, Qu X, Kan D, Cai B. The microRNA-451a/chromosome segregation 1-like axis suppresses cell proliferation, migration, and invasion and induces apoptosis in nasopharyngeal carcinoma. Bioengineered 2021; 12:6967-6980. [PMID: 34516344 PMCID: PMC8806603 DOI: 10.1080/21655979.2021.1975018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MicroRNA-451a (miR-451a) has been implicated in the initiation and progression of multiple cancers. However, the regulatory mechanisms underlying its function in nasopharyngeal carcinoma (NPC) are poorly understood. Thus, we investigated in detail the role of the microRNA-451a/chromosome segregation 1-like (miR-45a/CSE1L) axis and its regulatory mechanism in NPC. We examined the levels of miR-451a and CSE1L in NPC, and assessed the effects of miR-451a and CSE1L on NPC by cell functional experiments. Furthermore, we elucidated the direct regulatory effect of miR-451a on CSE1L by the luciferase reporter assay, RNA pull-down assay, and RNA immunoprecipitation and validated our observations by calculating the Pearson's correlation coefficient. We found that miR-451a was down-regulated in NPC cells, and its over-expression attenuated cell proliferation, migration, and invasion, and tumor growth in 5-8 F and SUNE-1 cells and promoted apoptosis. Moreover, CSE1L was the direct gene target of miR-451a, and its over-expression abrogated miR-451a-dependent inhibition of malignancy in 5-8 F and SUNE-1 cells. The Pearson's correlation coefficient indicated a negative correlation between CSE1L and miR-451a. miR-451a serves as a tumor suppressor and targets CSE1L. miR-451a suppresses CSE1L expression, thereby reducing proliferation, invasion, and migration and increasing apoptosis of NPC cells.
Collapse
Affiliation(s)
- Yi Luo
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Xiu Qu
- Department of Pain Treatment, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Dan Kan
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| | - Binlin Cai
- Department of Otorhinolaryngology, Affiliated Puren Hospital of Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
A Novel Mutation in Cse1l Disrupts Brain and Eye Development with Specific Effects on Pax6 Expression. J Dev Biol 2021; 9:jdb9030027. [PMID: 34287339 PMCID: PMC8293161 DOI: 10.3390/jdb9030027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Forward genetics in the mouse continues to be a useful and unbiased approach to identifying new genes and alleles with previously unappreciated roles in mammalian development and disease. Here, we report a new mouse allele of Cse1l that was recovered from an ENU mutagenesis screen. Embryos homozygous for the anteater allele of Cse1l display a number of variable phenotypes, with craniofacial and ocular malformations being the most obvious. We provide evidence that Cse1l is the causal gene through complementation with a novel null allele of Cse1l generated by CRISPR-Cas9 editing. While the variability in the anteater phenotype was high enough to preclude a detailed molecular analysis, we demonstrate a very penetrant reduction in Pax6 levels in the developing eye along with significant ocular developmental phenotypes. The eye gene discovery tool iSyTE shows Cse1l to be significantly expressed in the lens from early eye development stages in embryos through adulthood. Cse1l has not previously been shown to be required for organogenesis as homozygosity for a null allele results in very early lethality. Future detailed studies of Cse1l function in craniofacial and neural development will be best served with a conditional allele to circumvent the variable phenotypes we report here. We suggest that human next-generation (whole genome or exome) sequencing studies yielding variants of unknown significance in CSE1L could consider these findings as part of variant analysis.
Collapse
|
12
|
Kobayashi Y, Masuda T, Fujii A, Shimizu D, Sato K, Kitagawa A, Tobo T, Ozato Y, Saito H, Kuramitsu S, Noda M, Otsu H, Mizushima T, Doki Y, Eguchi H, Mori M, Mimori K. Mitotic checkpoint regulator RAE1 promotes tumor growth in colorectal cancer. Cancer Sci 2021; 112:3173-3189. [PMID: 34008277 PMCID: PMC8353924 DOI: 10.1111/cas.14969] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Microtubules are among the most successful targets for anticancer therapy because they play important roles in cell proliferation as they constitute the mitotic spindle, which is critical for chromosome segregation during mitosis. Hence, identifying new therapeutic targets encoding proteins that regulate microtubule assembly and function specifically in cancer cells is critical. In the present study, we identified a candidate gene that promotes tumor progression, ribonucleic acid export 1 (RAE1), a mitotic checkpoint regulator, on chromosome 20q through a bioinformatics approach using datasets of colorectal cancer (CRC), including The Cancer Genome Atlas (TCGA). RAE1 was ubiquitously amplified and overexpressed in tumor cells. High expression of RAE1 in tumor tissues was positively associated with distant metastasis and was an independent poor prognostic factor in CRC. In vitro and in vivo analysis showed that RAE1 promoted tumor growth, inhibited apoptosis, and promoted cell cycle progression, possibly with a decreased proportion of multipolar spindle cells in CRC. Furthermore, RAE1 induced chemoresistance through its anti-apoptotic effect. In addition, overexpression of RAE1 and significant effects on survival were observed in various types of cancer, including CRC. In conclusion, we identified RAE1 as a novel gene that facilitates tumor growth in part by inhibiting apoptosis and promoting cell cycle progression through stabilizing spindle bipolarity and facilitating tumor growth. We suggest that it is a potential therapeutic target to overcome therapeutic resistance of CRC.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Shotaro Kuramitsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Hajime Otsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| |
Collapse
|
13
|
Lin HC, Li J, Cheng DD, Zhang X, Yu T, Zhao FY, Geng Q, Zhu MX, Kong HW, Li H, Yao M. Nuclear export protein CSE1L interacts with P65 and promotes NSCLC growth via NF-κB/MAPK pathway. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:23-36. [PMID: 33869740 PMCID: PMC8039531 DOI: 10.1016/j.omto.2021.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/06/2021] [Indexed: 12/24/2022]
Abstract
Non-small cell lung cancer (NSCLC) is characterized with high morbidity and mortality, mainly due to frequent recurrence and metastasis. However, the underlying molecular mechanisms of NSCLC tumorigenesis are largely unclear. Through data mining in the ONCOMINE and Gene Expression Omnibus (GEO) databases, the expression of CSE1L (chromosome segregation like 1 protein/CAS), an exportin, was identified to be significantly upregulated in NSCLC and positively associated with poor prognosis of patients. By use of in vitro and in vivo gain- and loss-of-function experiments, we found that CSE1L can promote NSCLC cell proliferation while inhibiting cell apoptosis. Through immunoprecipitation and mass spectrometry experiments, we demonstrated that CSE1L interacted with RELA (named as P65) and affected its location in the nucleus. Moreover, we found that one of the mechanisms by which CSE1L promotes proliferation and inhibits apoptosis is through activating the nuclear factor-κB (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathway. In summary, our findings indicated an oncogenic role of CSE1L in NSCLC tumorigenesis.
Collapse
Affiliation(s)
- H C Lin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - J Li
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - D D Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - X Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - T Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - F Y Zhao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Q Geng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - M X Zhu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - H W Kong
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - H Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - M Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| |
Collapse
|
14
|
Ye M, Han R, Shi J, Wang X, Zhao AZ, Li F, Chen H. Cellular apoptosis susceptibility protein (CAS) suppresses the proliferation of breast cancer cells by upregulated cyp24a1. Med Oncol 2020; 37:43. [PMID: 32270348 DOI: 10.1007/s12032-020-01366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022]
Abstract
Breast cancer is the most common cancer in women. Although several studies demonstrated cellular apoptosis susceptibility protein (CAS) involved in the development of breast cancer, the underlying mechanisms of CAS regulating cell processes in the breast cancer remain elusive. In the present study, we explored the possible mechanism of CAS in contributing to the cell proliferation in the breast cancer cell line MCF-7. Knockdown of CAS led to the reduction of cell viability and proliferation. Furthermore, cell cycle was arrested in G0/G1 phase after knocking down CAS with the decrease of cyclinD1. In addition, RNA-seq analysis for the CAS knockdown cells demonstrated that total eleven genes were significantly altered (Fold changes > 2). Of note, the expression of cyp24a1 was dramatically increased in the shCAS cells compared to that of shNC cells as well as confirmed by quantitative real-time polymerase chain reaction (qPCR). These observations clarified the previous conflicting results on the cell fates of the breast cells regulated by CAS and provide new insight into the role of CAS in the development of breast cancer.
Collapse
Affiliation(s)
- Mei Ye
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Ruigang Han
- Reproductive Medicine Center of The 306th Hospital of PLA, Beijing, China
| | - Jianwu Shi
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China
| | - Xunda Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Allan Z Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fanghong Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Hao Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, China.
| |
Collapse
|
15
|
Liu C, Wei J, Xu K, Sun X, Zhang H, Xiong C. CSE1L participates in regulating cell mitosis in human seminoma. Cell Prolif 2018; 52:e12549. [PMID: 30485574 PMCID: PMC6496685 DOI: 10.1111/cpr.12549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 09/28/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022] Open
Abstract
Objectives CSE1L has been reported to be highly expressed in various tumours. Testicular germ cell tumours are common among young males, and seminoma is the major type. However, whether CSE1L has functions in the seminoma is unclear. Materials and methods The expression of CSE1L was detected by immunohistochemistry in seminoma tissues and non‐tumour normal testis tissues from patients. CSE1L distribution during cell mitosis was determined by immunofluorescent staining with CSE1L, α‐tubulin and γ‐tubulin antibodies. The effects of Cse1L knockdown on cell proliferation and cell cycle progression were determined by Cell Counting Kit‐8 assay, flow cytometry, PH3 staining and bromodeoxyuridine incorporation assay. Results CSE1L was significantly enriched in the seminoma tissue compared with the non‐tumour normal testis tissue. CSE1L also co‐localized with α‐tubulin in the cells with a potential to divide. In the seminoma cell line TCam‐2, CSE1L was associated with the spindles and the centrosomes during cell division. The knockdown of CSE1L in TCam‐2 cells attenuated the cells’ proliferative capacity. Cell cycle assay revealed that the CSE1L‐deficient cells were mainly arrested in the G0/G1 phase and moderately delayed in the G2/M phase. The proportion of cells with multipolar spindle and abnormal spindle geometry was obviously increased by CSE1L expression silencing in the TCam‐2 cells. Conclusions Overall, these findings showed that CSE1L plays a pivotal role in maintaining cell proliferation and cell division in seminomas.
Collapse
Affiliation(s)
- Chunyan Liu
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiajing Wei
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Xu
- The First People's Hospital of Tianmen City, Tianmen, China
| | - Xiaosong Sun
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Huiping Zhang
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, Hubei, China
| |
Collapse
|