1
|
Liu W, Wang W, Wang Z, Fan X, Li W, Huang Y, Yang X, Tang Z. CRISPR Screen Identifies the RNA-Binding Protein Eef1a1 as a Key Regulator of Myogenesis. Int J Mol Sci 2024; 25:4816. [PMID: 38732031 PMCID: PMC11084334 DOI: 10.3390/ijms25094816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Skeletal muscle myogenesis hinges on gene regulation, meticulously orchestrated by molecular mechanisms. While the roles of transcription factors and non-coding RNAs in myogenesis are widely known, the contribution of RNA-binding proteins (RBPs) has remained unclear until now. Therefore, to investigate the functions of post-transcriptional regulators in myogenesis and uncover new functional RBPs regulating myogenesis, we employed CRISPR high-throughput RBP-KO (RBP-wide knockout) library screening. Through this approach, we successfully identified Eef1a1 as a novel regulatory factor in myogenesis. Using CRISPR knockout (CRISPRko) and CRISPR interference (CRISPRi) technologies, we successfully established cellular models for both CRISPRko and CRISPRi. Our findings demonstrated that Eef1a1 plays a crucial role in promoting proliferation in C2C12 myoblasts. Through siRNA inhibition and overexpression methods, we further elucidated the involvement of Eef1a1 in promoting proliferation and suppressing differentiation processes. RIP (RNA immunoprecipitation), miRNA pull-down, and Dual-luciferase reporter assays confirmed that miR-133a-3p targets Eef1a1. Co-transfection experiments indicated that miR-133a-3p can rescue the effect of Eef1a1 on C2C12 myoblasts. In summary, our study utilized CRISPR library high-throughput screening to unveil a novel RBP, Eef1a1, involved in regulating myogenesis. Eef1a1 promotes the proliferation of myoblasts while inhibiting the differentiation process. Additionally, it acts as an antagonist to miR-133a-3p, thus modulating the process of myogenesis.
Collapse
Affiliation(s)
- Weiwei Liu
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
| | - Wei Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Zishuai Wang
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Wangchang Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuxin Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xiaogan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
| | - Zhonglin Tang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science & Technology, Guangxi University, Nanning 530004, China; (W.L.); (W.L.); (Y.H.)
- Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, China; (W.W.); (Z.W.); (X.F.)
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
2
|
Bello AJ, Popoola A, Okpuzor J, Ihekwaba-Ndibe AE, Olorunniji FJ. A Genetic Circuit Design for Targeted Viral RNA Degradation. Bioengineering (Basel) 2023; 11:22. [PMID: 38247899 PMCID: PMC10813695 DOI: 10.3390/bioengineering11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Advances in synthetic biology have led to the design of biological parts that can be assembled in different ways to perform specific functions. For example, genetic circuits can be designed to execute specific therapeutic functions, including gene therapy or targeted detection and the destruction of invading viruses. Viral infections are difficult to manage through drug treatment. Due to their high mutation rates and their ability to hijack the host's ribosomes to make viral proteins, very few therapeutic options are available. One approach to addressing this problem is to disrupt the process of converting viral RNA into proteins, thereby disrupting the mechanism for assembling new viral particles that could infect other cells. This can be done by ensuring precise control over the abundance of viral RNA (vRNA) inside host cells by designing biological circuits to target vRNA for degradation. RNA-binding proteins (RBPs) have become important biological devices in regulating RNA processing. Incorporating naturally upregulated RBPs into a gene circuit could be advantageous because such a circuit could mimic the natural pathway for RNA degradation. This review highlights the process of viral RNA degradation and different approaches to designing genetic circuits. We also provide a customizable template for designing genetic circuits that utilize RBPs as transcription activators for viral RNA degradation, with the overall goal of taking advantage of the natural functions of RBPs in host cells to activate targeted viral RNA degradation.
Collapse
Affiliation(s)
- Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Biological Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
| | - Abdulgafar Popoola
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Medical Laboratory Science, Kwara State University, Malete, Ilorin 241102, Kwara State, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, University of Lagos, Akoka, Lagos 101017, Lagos State, Nigeria;
| | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
| |
Collapse
|
3
|
Kanafi MM, Tavallaei M. Overview of advances in CRISPR/deadCas9 technology and its applications in human diseases. Gene 2022; 830:146518. [PMID: 35447246 DOI: 10.1016/j.gene.2022.146518] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022]
Abstract
Prokaryotes possess an adaptive immune system using various CRISPR associated (Cas) genes to make an archive of records from invading phages and eliminate them upon re-exposure when specialized Cas proteins cut foreign DNA into small pieces. On the basis of the different types of Cas proteins, CRISPR systems seen in some prokaryotic genomes, are different to each other. It has been proved that CRISPR has a great potential for genome engineering. Studies have also demonstrated that in comparison to the preceding genome engineering tools CRISPR/Cas systems can be harnessed as a flexible tool with easy multiplexing and scaling ability. Recent studies suggest that CRISPR/Cas systems can also be used for non-genome engineering roles. Isolation and identification of new Cas proteins or modification of existing ones are effectively increasing the number of CRISPR applications and helps its development. D10A and H840A mutations at RuvC and HNH endonuclease domains of wild type Streptococcus pyogenes Cas9 (SpCas9) respectively creates a nuclease, dead Cas9 (dCas9) molecule, that does not cut target DNA but still retains its capability for binding to target DNA based on the gRNA targeting sequence. In this article we review the potentials of this enzyme, dCas9, toward development of the applications of CRISPR/dCas9 technology in fields such as; visualization of genomic loci, disease diagnosis and transcriptional repression and activation.
Collapse
Affiliation(s)
| | - Mahmood Tavallaei
- Human Genetic Research Centre, Baqiyatallah University of Medical Science, Tehran, Iran
| |
Collapse
|
4
|
Omer R, Mohsin MZ, Mohsin A, Mushtaq BS, Huang X, Guo M, Zhuang Y, Huang J. Engineered Bacteria-Based Living Materials for Biotherapeutic Applications. Front Bioeng Biotechnol 2022; 10:870675. [PMID: 35573236 PMCID: PMC9096031 DOI: 10.3389/fbioe.2022.870675] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/11/2022] [Indexed: 11/10/2022] Open
Abstract
Future advances in therapeutics demand the development of dynamic and intelligent living materials. The past static monofunctional materials shall be unable to meet the requirements of future medical development. Also, the demand for precision medicine has increased with the progressively developing human society. Therefore, engineered living materials (ELMs) are vitally important for biotherapeutic applications. These ELMs can be cells, microbes, biofilms, and spores, representing a new platform for treating intractable diseases. Synthetic biology plays a crucial role in the engineering of these living entities. Hence, in this review, the role of synthetic biology in designing and creating genetically engineered novel living materials, particularly bacteria, has been briefly summarized for diagnostic and targeted delivery. The main focus is to provide knowledge about the recent advances in engineered bacterial-based therapies, especially in the treatment of cancer, inflammatory bowel diseases, and infection. Microorganisms, particularly probiotics, have been engineered for synthetic living therapies. Furthermore, these programmable bacteria are designed to sense input signals and respond to disease-changing environments with multipronged therapeutic outputs. These ELMs will open a new path for the synthesis of regenerative medicines as they release therapeutics that provide in situ drug delivery with lower systemic effects. In last, the challenges being faced in this field and the future directions requiring breakthroughs have been discussed. Conclusively, the intent is to present the recent advances in research and biomedical applications of engineered bacteria-based therapies during the last 5 years, as a novel treatment for uncontrollable diseases.
Collapse
Affiliation(s)
- Rabia Omer
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Zubair Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bilal Sajid Mushtaq
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Xumeng Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jiaofang Huang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China,*Correspondence: Jiaofang Huang,
| |
Collapse
|
5
|
Feng S, Wang Z, Li A, Xie X, Liu J, Li S, Li Y, Wang B, Hu L, Yang L, Guo T. Strategies for High-Efficiency Mutation Using the CRISPR/Cas System. Front Cell Dev Biol 2022; 9:803252. [PMID: 35198566 PMCID: PMC8860194 DOI: 10.3389/fcell.2021.803252] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated systems have revolutionized traditional gene-editing tools and are a significant tool for ameliorating gene defects. Characterized by high target specificity, extraordinary efficiency, and cost-effectiveness, CRISPR/Cas systems have displayed tremendous potential for genetic manipulation in almost any organism and cell type. Despite their numerous advantages, however, CRISPR/Cas systems have some inherent limitations, such as off-target effects, unsatisfactory efficiency of delivery, and unwanted adverse effects, thereby resulting in a desire to explore approaches to address these issues. Strategies for improving the efficiency of CRISPR/Cas-induced mutations, such as reducing off-target effects, improving the design and modification of sgRNA, optimizing the editing time and the temperature, choice of delivery system, and enrichment of sgRNA, are comprehensively described in this review. Additionally, several newly emerging approaches, including the use of Cas variants, anti-CRISPR proteins, and mutant enrichment, are discussed in detail. Furthermore, the authors provide a deep analysis of the current challenges in the utilization of CRISPR/Cas systems and the future applications of CRISPR/Cas systems in various scenarios. This review not only serves as a reference for improving the maturity of CRISPR/Cas systems but also supplies practical guidance for expanding the applicability of this technology.
Collapse
Affiliation(s)
- Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zilong Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xin Xie
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Junjie Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yalan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Baiyan Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lina Hu
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lianhe Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Tao Guo
- Department of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
6
|
Madhavan M, Mustafa S. Systems biology–the transformative approach to integrate sciences across disciplines. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Life science is the study of living organisms, including bacteria, plants, and animals. Given the importance of biology, chemistry, and bioinformatics, we anticipate that this chapter may contribute to a better understanding of the interdisciplinary connections in life science. Research in applied biological sciences has changed the paradigm of basic and applied research. Biology is the study of life and living organisms, whereas science is a dynamic subject that as a result of constant research, new fields are constantly emerging. Some fields come and go, whereas others develop into new, well-recognized entities. Chemistry is the study of composition of matter and its properties, how the substances merge or separate and also how substances interact with energy. Advances in biology and chemistry provide another means to understand the biological system using many interdisciplinary approaches. Bioinformatics is a multidisciplinary or rather transdisciplinary field that encourages the use of computer tools and methodologies for qualitative and quantitative analysis. There are many instances where two fields, biology and chemistry have intersection. In this chapter, we explain how current knowledge in biology, chemistry, and bioinformatics, as well as its various interdisciplinary domains are merged into life sciences and its applications in biological research.
Collapse
Affiliation(s)
- Maya Madhavan
- Department of Biochemistry , Government College for Women , Thiruvananthapuram , Kerala , India
| | - Sabeena Mustafa
- Department of Biostatistics and Bioinformatics , King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs (MNGHA) , Riyadh , Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Zhou Q, Zhan H, Liao X, Fang L, Liu Y, Xie H, Yang K, Gao Q, Ding M, Cai Z, Huang W, Liu Y. A revolutionary tool: CRISPR technology plays an important role in construction of intelligentized gene circuits. Cell Prolif 2018; 52:e12552. [PMID: 30520167 PMCID: PMC6496519 DOI: 10.1111/cpr.12552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
With the development of synthetic biology, synthetic gene circuits have shown great applied potential in medicine, biology, and as commodity chemicals. An ultimate challenge in the construction of gene circuits is the lack of effective, programmable, secure and sequence-specific gene editing tools. The clustered regularly interspaced short palindromic repeat (CRISPR) system, a CRISPR-associated RNA-guided endonuclease Cas9 (CRISPR-associated protein 9)-targeted genome editing tool, has recently been applied in engineering gene circuits for its unique properties-operability, high efficiency and programmability. The traditional single-targeted therapy cannot effectively distinguish tumour cells from normal cells, and gene therapy for single targets has poor anti-tumour effects, which severely limits the application of gene therapy. Currently, the design of gene circuits using tumour-specific targets based on CRISPR/Cas systems provides a new way for precision cancer therapy. Hence, the application of intelligentized gene circuits based on CRISPR technology effectively guarantees the safety, efficiency and specificity of cancer therapy. Here, we assessed the use of synthetic gene circuits and if the CRISPR system could be used, especially artificial switch-inducible Cas9, to more effectively target and treat tumour cells. Moreover, we also discussed recent advances, prospectives and underlying challenges in CRISPR-based gene circuit development.
Collapse
Affiliation(s)
- Qun Zhou
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hengji Zhan
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xinhui Liao
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lan Fang
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China
| | - Yuhan Liu
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haibiao Xie
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kang Yang
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qunjun Gao
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Mengting Ding
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Yuchen Liu
- Department of Urology, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|