1
|
Tabe S, Takeuchi K, Aoshima K, Okumura A, Yamamoto Y, Yanagisawa K, Eto R, Matsuo M, Ueno Y, Konishi T, Furukawa Y, Yamaguchi K, Morinaga S, Miyagi Y, Ohtsuka M, Tanimizu N, Taniguchi H. A pancreatic cancer organoid incorporating macrophages reveals the correlation between the diversity of tumor-associated macrophages and cancer cell survival. Biomaterials 2024; 314:122838. [PMID: 39348736 DOI: 10.1016/j.biomaterials.2024.122838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a progressive cancer with a poor prognosis. It contains a complex tumor microenvironment (TME) that includes various stromal cell types. Comprehending cellular communications within the TME is difficult due to a lack of research models that can recapitulate human PDAC-TME. Previously, we recapitulated, in part, the PDAC-TME containing a diversity of cancer-associated fibroblasts (CAFs) in vitro. This was done by establishing a PDAC organoid by co-culturing patient-derived cancer cells with human induced pluripotent stem cell (hiPSC)-derived mesenchymal and endothelial cells, which was designated the fused pancreatic cancer organoid (FPCO). We further incorporated macrophages derived from the THP-1 cell line, which are the source of tumor-associated macrophages (TAMs), a major TME component, into FPCO, which was designated M0-FPCO. Bulk RNA sequencing (RNAseq) analysis revealed that macrophages in M0-FPCO (FPCO-Mac) lost their pro-inflammatory features but acquired pro-angiogenic features. Consistently, the formation of an endothelial cell network was enhanced in M0-FPCO. Single-cell RNA-seq (scRNA-seq) analysis revealed that M0-FPCO contained five TAM subpopulations similar to the corresponding TAM in human PDAC tissue in the integrated analysis, including SPP1+-TAM, which has been correlated with tumor angiogenesis and cell proliferation. Focusing on PDAC cells, we found that they could survive longer within the organoid in the presence of TAM. Consistent with the prolonged proliferation and survival of PDAC cells, PDAC subclusters were characterized by proliferative features, such as increased M0-FPCO. Therefore, by establishing a PDAC organoid with macrophages, we recapitulated the diversity of TAMs and identified the role of TAM in endothelial network formation as well as in the modulation of PDAC cell properties. SIGNIFICANCE: PDAC organoids, including macrophages using hiPSC, showed that PDAC-TAM has angiogenic features and contributes to PDAC cell survival.
Collapse
Affiliation(s)
- Shunsuke Tabe
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kenta Takeuchi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Ayumu Okumura
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Yuya Yamamoto
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan; Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Kazuki Yanagisawa
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Ryotaro Eto
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Megumi Matsuo
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan
| | - Yasuharu Ueno
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan
| | - Takanori Konishi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Yoichi Furukawa
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Japan
| | - Kiyoshi Yamaguchi
- Division of Clinical Genome Research, The Institute of Medical Science, The University of Tokyo, Japan
| | - Soichiro Morinaga
- Department of Gastrointestinal Surgery, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan.
| | - Hideki Taniguchi
- Division of Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Japan; Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Kanagawa, Japan.
| |
Collapse
|
2
|
Zhao Z, Zhou Y, Lv P, Zhou T, Liu H, Xie Y, Wu Z, Wang X, Zhao H, Zheng J, Jiang X. NSUN4 mediated RNA 5-methylcytosine promotes the malignant progression of glioma through improving the CDC42 mRNA stabilization. Cancer Lett 2024; 597:217059. [PMID: 38876383 DOI: 10.1016/j.canlet.2024.217059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/16/2024]
Abstract
5-Methylcytosine (m5C) methylation is a significant post-transcriptional modification that play a crucial role in the development and progression of numerous cancers. Whereas the functions and molecular mechanisms underlying m5C methylation in gliomas remain unclear. This study dedicated to explore changes of m5C levels and the clinical significance of the m5C writer NSUN4 in gliomas. We found that high m5C levels were negatively related to prognosis of patients with glioma. Moreover, gain- and loss-of-function experiments revealed the role of NSUN4 in enhancing m5C modification of mRNA to promote the malignant progression of glioma. Mechanistically speaking, NSUN4-mediated m5C alterations regulated ALYREF binding to CDC42 mRNA, thereby impacting the mRNA stability of CDC42. We also demonstrated that CDC42 promoted glioma proliferation, migration, and invasion by activating the PI3K-AKT pathway. Additionally, rescue experiments proved that CDC42 overexpression weaken the inhibitory effect of NSUN4 knockdown on the malignant progression of gliomas in vitro and in vivo. Our findings elucidated that NSUN4-mediated high m5C levels promote ALYREF binding to CDC42 mRNA and regulate its stability, thereby driving the malignant progression of glioma. This provides theoretical support for targeted the treatment of gliomas.
Collapse
Affiliation(s)
- Zhen Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yujie Zhou
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Peng Lv
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ting Zhou
- Department of Gynaecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hanyuan Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Youxi Xie
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhipeng Wu
- Department of Neurosurgery, Weifang People's Hospital, Weifang, China
| | - Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongyang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Jianglin Zheng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Zhong B, Ma DD, Zhang T, Gong Q, Dong Y, Zhang JX, Li ZH, Jin WD. Clinicopathological Characteristics, Prognosis, and Correlated Tumor Cell Function of Tropomodulin-3 in Pancreatic Adenocarcinoma. Comb Chem High Throughput Screen 2024; 27:1011-1021. [PMID: 37563820 PMCID: PMC11165712 DOI: 10.2174/1386207326666230810142646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Pancreatic adenocarcinoma (PAAD) is a frequent malignant tumor with a high mortality rate. Searching for novel biomarkers that can influence its prognosis may help patients. It has been shown that tropomodulin-3 (TMOD3) may influence tumor progression, but its role in pancreatic cancer is not clear. We aimed to explore the expression and prognostic value of TMOD3 in PAAD. METHODS We used bioinformatics analysis to analyze the relationship between TMOD3 expression and clinicopathological features and prognosis and verified it with clinical data from tissue microarray. We also conducted in vitro cell experiments to explore the effects of TMOD3 on the function of PAAD cells. RESULTS TMOD3 expression was found to be significantly higher in PAAD tissues than in matched paracancerous tissues (P < 0.05). Meanwhile, high TMOD3 expression was associated with significantly poorer overall survival (P < 0.05). Analysis of relevant clinicopathological characteristics data obtained from TCGA showed that high TMOD3 expression correlated with age, TNM stage, N stage, and M stage (P < 0.05). Analysis of correlation data obtained from tissue microarrays showed that high TMOD3 expression was associated with lymph node invasion, nerve invasion, macrovascular invasion, and TNM stage (P < 0.05). In addition, siRNA knockdown of TMOD3 significantly reduced the migration and invasion of PAAD cells. CONCLUSION Our study shows that TMOD3 may be associated with the progression of PAAD cells, and that it is an independent risk factor for poor pathological features and prognosis of PAAD. It may be helpful as a prognostic indicator of clinical outcomes in PAAD patients.
Collapse
Affiliation(s)
- Bin Zhong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Dan-Dan Ma
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Tao Zhang
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Qi Gong
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Yi Dong
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Xin Zhang
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Zhong-Hu Li
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| | - Wei-Dong Jin
- Department of General Surgery, General Hospital of Central Theater Command, Wuhan, 430070, China
| |
Collapse
|
4
|
Zeng F, Xu Z, Zhuang P. Integrated analysis of SKA1-related ceRNA network and SKA1 immunoassays in HCC: A study based on bioinformatic. Medicine (Baltimore) 2023; 102:e34826. [PMID: 37746945 PMCID: PMC10519508 DOI: 10.1097/md.0000000000034826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) poses a global health challenge. Effective biomarkers are required for early diagnosis to improve survival rates of patients with HCC. Spindle and kinetochore-associated complex subunits 1 (SKA1) is essential for proper chromosome segregation in the mitotic cell cycle. Previous studies have shown that overexpression of SKA1 is associated with a poor prognosis in various cancers. The expression, prognostic value, and clinical functions of SKA1 in HCC were evaluated with several bioinformatics web portals. Additionally, we identified target long non-coding RNAs (lncRNAs) and microRNAs by analyzing messenger RNA (mRNA)-miRNA and miRNA-lncRNA interaction data and elucidated the potential competing endogenous RNA (ceRNA) mechanism associated with SKA1. High SKA1 expression was associated with poor prognosis in patients with HCC. Furthermore, multivariate Cox regression analysis revealed that SKA1 expression was an independent prognostic factor for HCC. GO and KEGG analyses showed that SKA1 is related to the cell cycle checkpoints, DNA replication and repair, Rho GTPases signaling, mitotic prometaphase, and kinesins. Gene set enrichment analysis revealed that high levels of SKA1 are associated with cancer-promoting pathways. DNA methylation of SKA1 in HCC tissues was lower than that in normal tissues. Ultimately, the following 9 potential ceRNA-based pathways targeting SKA1 were identified: lncRNA: AC026401.3, Small Nucleolar RNA Host Gene 3 (SNHG3), and AC124798.1-miR-139-5p-SKA1; lncRNA: AC26356.1, Small Nucleolar RNA Host Gene 16 (SNHG16), and FGD5 Antisense RNA 1-miR-22-3p-SKA1; lncRNA: Cytoskeleton Regulator RNA (CYTOR), MIR4435-2 Host Gene, and differentiation antagonizing non-protein coding RNA-miR-125b-5p-SKA1. SKA1 expression levels significantly correlated with immune cell infiltration and immune checkpoint genes in the HCC tissues. SKA1 is a potential prognostic biomarker for HCC. This study provides a meaningful direction for research on SKA1-related mechanisms, which will be beneficial for future research on HCC-related molecular biological therapies and targeted immunotherapy.
Collapse
Affiliation(s)
- Fanjing Zeng
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| | - Zhiqi Xu
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| | - Peng Zhuang
- Department of Infectious Disease, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen City, China
| |
Collapse
|
5
|
Lan H, Yuan J, Zhang R, Jiang B, Li Q, Huang Z, Chen P, Xiang H, Zeng X, Xiao S. Pancancer analysis of SKA1 mutation and its association with the diagnosis and prognosis of human cancers. Genomics 2023; 115:110554. [PMID: 36587749 DOI: 10.1016/j.ygeno.2022.110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
This study aims to explore the role of SKA1 in cancer diagnosis and prognosis and to investigate the mechanism by which SKA1 affects the malignant behaviors of ovarian cancer. Herein, we analyzed the oncogenic role of SKA1 at pan-cancer level by multiple informatics databases and verified the analysis by in vitro experiments. As a result, SKA1 was upregulated across cancers and was related to poor clinical outcome and immune infiltration. Specifically, the constructed nomogram showed superior performance in predicting the prognosis of epithelial ovarian cancer patients. Furthermore, the in vitro experiments revealed that silencing SKA1 significantly inhibited the proliferation, migratory ability and enhanced the cisplatin sensitivity of ovarian cancer cells. Therefore, we explored the oncogenic and potential therapeutic role of SKA1 across cancers through multiple bioinformatic analysis and revealed that SKA1 may promote ovarian cancer progression and chemoresistance to cisplatin by activating the AKT-FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Hua Lan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Gynecology and Obstetrics, Changsha Central Hospital of University of South China, Changsha, Hunan, China
| | - Jing Yuan
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rui Zhang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Oncology, Huaihua Hospital of University of South China, Huaihua, Hunan, China
| | - Biyao Jiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiaofen Li
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zongyan Huang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peiling Chen
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Huimin Xiang
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangyang Zeng
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Songshu Xiao
- Department of Gynecology and Obstetrics, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Xie W, Han Z, Zuo Z, Xin D, Chen H, Huang J, Zhu S, Lou H, Yu Z, Chen C, Chen S, Hu Y, Huang J, Zhang F, Ni Z, Shen X, Xue X, Lin K. ASAP1 activates the IQGAP1/CDC42 pathway to promote tumor progression and chemotherapy resistance in gastric cancer. Cell Death Dis 2023; 14:124. [PMID: 36792578 PMCID: PMC9932153 DOI: 10.1038/s41419-023-05648-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Abnormal expression and remodeling of cytoskeletal regulatory proteins are important mechanisms for tumor development and chemotherapy resistance. This study systematically analyzed the relationship between differential expression of cytoskeleton genes and prognosis in gastric cancer (GC). We found the Arf GTP-activating protein ASAP1 plays a key role in cytoskeletal remodeling and prognosis in GC patients. Here we analyzed the expression level of ASAP1 in tissue microarrays carrying 564 GC tissues by immunohistochemistry. The results showed that ASAP1 expression was upregulated in GC cells and can be served as a predictor of poor prognosis. Moreover, ASAP1 promoted the proliferation, migration, and invasion of GC cells both in vitro and in vivo. We also demonstrated that ASAP1 inhibited the ubiquitin-mediated degradation of IQGAP1 and thus enhanced the activity of CDC42. The activated CDC42 upregulated the EGFR-MAPK pathway, thereby promoting the resistance to chemotherapy in GC. Taken together, our results revealed a novel mechanism by which ASAP1 acts in the progression and chemotherapy resistance in GC. This may provide an additional treatment option for patients with GC.
Collapse
Affiliation(s)
- Wangkai Xie
- grid.417384.d0000 0004 1764 2632Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China ,grid.414906.e0000 0004 1808 0918Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ,grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zheng Han
- grid.417384.d0000 0004 1764 2632Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China ,grid.414906.e0000 0004 1808 0918Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ,grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ziyi Zuo
- grid.414906.e0000 0004 1808 0918Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ,grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dong Xin
- grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hua Chen
- grid.414906.e0000 0004 1808 0918Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ,grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Juanjuan Huang
- grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siyu Zhu
- grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiqiang Yu
- grid.417384.d0000 0004 1764 2632Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China ,grid.414906.e0000 0004 1808 0918Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ,grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenbin Chen
- grid.417384.d0000 0004 1764 2632Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China ,grid.414906.e0000 0004 1808 0918Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ,grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Sian Chen
- grid.417384.d0000 0004 1764 2632Department of emergency, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanbo Hu
- grid.417384.d0000 0004 1764 2632Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China ,grid.414906.e0000 0004 1808 0918Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China ,grid.268099.c0000 0001 0348 3990Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingjing Huang
- grid.417384.d0000 0004 1764 2632Department of Pathology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fabiao Zhang
- grid.268099.c0000 0001 0348 3990Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Department of Hepatic-biliary-pancreatic Surgery Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, 317000 Zheiang Province Linhai, China
| | - Zhonglin Ni
- grid.417384.d0000 0004 1764 2632Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China. .,Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Kezhi Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Experiemtial Center of Basic Medicine, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Song GQ, He TL, Ji KJ, Duan YM, Zhang JW, Hu GQ. SKA1/2/3 is a biomarker of poor prognosis in human hepatocellular carcinoma. Front Oncol 2022; 12:1038925. [PMID: 36439516 PMCID: PMC9684634 DOI: 10.3389/fonc.2022.1038925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/25/2022] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Spindle and kinetochore-associated complex subunits 1-3 (SKA1-3) stabilize the kinetochore-attached spindle microtubules in metaphase. Due to the dysregulation in multiple cancers, SKA1-3 is considered a predictor for the prognosis of the patients. However, the potential clinical applications of SKA1-3, particularly in hepatocellular carcinoma (HCC) prognosis and progression, have completely unknown yet. METHODS For the analysis of SKA1-3 expression and applications in clinics in HCC patients, several databases, such as STRING, UALCAN, GEO, and TCGA, were searched. In addition, the underlying mechanisms of SKA for the regulation of HCC occurrence, development, and progression were also explored. RESULTS Compared to the normal controls, HCC patients showed dramatically elevated SKA1-3 expression at the mRNA level, and the values of the area under the curve (AUC) were 0.982, 0.887, and 0.973, respectively. Increased SKA1-3 expression levels were associated with the clinical stage, age, body mass index, tumor grade, tissue subtype, and Tp53 mutation status in HCC patients. The analyses of Kyoto Encyclopedia of Genes and Genome (KEGG) and Gene ontology (GO) demonstrated that SKA1-3 are enriched mainly in the Fanconi anemia, homologous recombination, spliceosome, DNA replication, and cell cycle signaling pathways. The hub genes, such as CDK1, CCNB1, CCNA2, TOP2A, BUB1, AURKB, CCNB2, BUB1B, NCAPG, and KIF11, were identified in protein-protein interactions (PPIs). The expression levels of hub genes were increased in HCC patients and predictive of a poor prognosis. Finally, the expression levels of SKA1-3 were determined using the GEO database. CONCLUSIONS SKA1-3 are potential prognostic biomarkers of and targets for HCC. In addition, SKA1-3 may affect HCC prognosis via the Fanconi anemia pathway, homologous recombination, spliceosome, DNA replication, and cell cycle signaling pathway.
Collapse
Affiliation(s)
- Guo-Qiang Song
- Department of Respiratory, Changxing Hospital of Traditional Chinese Medicine, Huzhou, China
| | - Tian-Li He
- Department of Radiotherapy, Changxing People’s Hospital, Huzhou, China
| | - Ke-Jie Ji
- Department of Respiratory, Changxing Hospital of Traditional Chinese Medicine, Huzhou, China
| | - Yi-Meng Duan
- Department of Radiotherapy, Changxing People’s Hospital, Huzhou, China
| | - Jia-Wen Zhang
- Department of Respiratory, Changxing Hospital of Traditional Chinese Medicine, Huzhou, China
| | - Guo-Qiang Hu
- Department of Respiratory, Changxing Hospital of Traditional Chinese Medicine, Huzhou, China
- Department of Cancer Center, Changxing Hospital of Traditional Chinese Medicine, Huzhou, China
| |
Collapse
|
8
|
Cai C, Zhang Y, Hu X, Yang S, Ye J, Wei Z, Chu T. Spindle and Kinetochore-associated Family Genes are Prognostic and Predictive Biomarkers in Hepatocellular Carcinoma. J Clin Transl Hepatol 2022; 10:627-641. [PMID: 36062274 PMCID: PMC9396317 DOI: 10.14218/jcth.2021.00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is one of the most frequent malignant tumors. Spindle and kinetochore-associated (SKA) family genes are essential for the maintenance of the metaphase plate and spindle checkpoint silencing during mitosis. Recent studies have indicated that dysregulation of SKA family genes induces tumorigenesis, tumor progression, and chemoresistance via modulation of cell cycle and DNA replication. However, the differential transcription of SKAs in the context of HCC and its prognostic significance has not been demonstrated. METHODS Bioinformatics analyses were performed using TCGA, ONCOMINE, HCCDB, Kaplan-Meier plotter, STRING, GEPIA databases. qRT-PCR, western blot, and functional assays were utilized for in vitro experiments. RESULTS We found remarkable upregulation of transcripts of SKA family genes in HCC samples compared with normal liver samples on bioinformatics analyses and in vitro validation. Interaction analysis and enrichment analysis showed that SKA family members were mainly related to microtubule motor activity, mitosis, and cell cycle. Immuno-infiltration analysis showed a correlation of all SKA family genes with various immune cell subsets, especially T helper 2 (Th2) cells. Transcriptional levels of SKA family members were positively associated with histologic grade, T stage, and α-fetoprotein in HCC patients. Receiver operating characteristic curve analysis demonstrated a strong predictive ability of SKA1/2/3 for HCC. Increased expression of these SKAs was associated with unfavorable overall survival, progression-free survival, and disease-specific survival. On Cox proportional hazards regression analyses, SKA1 upregulation and pathological staging were independent predictors of overall survival and disease-specific survival of HCC patients. Finally, clinical tissue microarray validation and in vitro functional assays revealed SKA1 acts an important regulatory role in tumor malignant behavior. CONCLUSIONS SKA family members may potentially serve as diagnostic and prognostic markers in the context of HCC. The correlation between SKAs and immune cell infiltration provides a promising research direction for SKA-targeted immunotherapeutics for HCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tongwei Chu
- Correspondence to: Tongwei Chu, Department of Orthopedics, Xinqiao Hospital, Third Military Medical University (Army Medical University), No.83 Xinqiao Main Street, Shapingba District, Chongqing 400037, China. ORCID: https://orcid.org/0000-0003-0309-7082. Tel: +86-13708388336, E-mail:
| |
Collapse
|
9
|
Yu Y, Wang Y, Zou Y, Yu Y. CYP26A1 Is a Novel Cancer Biomarker of Pancreatic Carcinoma: Evidence from Integration Analysis and In Vitro Experiments. DISEASE MARKERS 2022; 2022:5286820. [PMID: 35707714 PMCID: PMC9192288 DOI: 10.1155/2022/5286820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
Background CYP26A1 has been reported in multiple cancers. However, the role of CYP26A1 in pancreatic cancer (PC) has not been explored. Method The public data used for this study was obtained from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), and Cancer Cell Line Encyclopedia (CCLE) cell lines. CCK8, colony formation, and EdU assay were used to assess the proliferation ability of cancer cells. Transwell and wound healing assays were used to evaluate the invasion and migration ability of cancer cells. qRT-PCR and western blot assays were used to analyze the RNA and protein level of genes. Survival package was used for prognosis analysis. Gene Set Enrichment Analysis (GSEA) was used to identify biological pathway differences between two groups. ssGSEA analysis was used to quantify the immune microenvironment in PC tissue. GDSC and TIDE analyses were used for sensitivity analysis of chemotherapy and immunotherapy. Results Our results showed that CYP26A1 was overexpressed in PC tissue and cell lines. Meanwhile, metastatic PC cell lines tend to have a higher CYP26A1 level compared with the primary PC cell lines based on CCLE data. Moreover, CYP26A1 was associated with worse clinical features. Also, we found that CYP26A1 had a satisfactory efficiency in predicting overall survival, disease-specific survival, and progression-free interval of PC patients, independent of other clinical features. In vitro experiments indicated that CYP26A1 could significantly facilitate the proliferation, invasion, and migration ability of PC cells. GSEA showed that the pathways of angiogenesis, E2F target, MYC target, mTORC signaling, G2M checkpoint, and epithelial-mesenchymal transition were activated in high CYP26A1 patients. Immune infiltration analysis showed that CYP26A1 was positively correlated with macrophages, Th1 cells, and Treg cells, but negatively correlated with Th17 cells. TIDE analysis showed that non_responder patients had a higher CYP26A1 level compared with predicted responder patients of immunotherapy. Drug sensitivity analysis and assay showed that CYP26A1 could increase the chemotherapy sensitivity of gemcitabine. Conclusions In summary, CYP26A1 promotes PC progression and is a novel biomarker of PC, with potential for clinical application.
Collapse
Affiliation(s)
- Yi Yu
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao-Tong University, School of Medicine, Xi Wang Road 999, Shanghai, China 201801
| | - Yunxing Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Xi Wang Road 999, Shanghai, China 201801
| | - Yufeng Zou
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Yuan Yu
- Department of General Surgery, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| |
Collapse
|
10
|
Huang X, Zhao L, Jin Y, Wang Z, Li T, Xu H, Wang Q, Wang L. Up-Regulated MISP Is Associated With Poor Prognosis and Immune Infiltration in Pancreatic Ductal Adenocarcinoma. Front Oncol 2022; 12:827051. [PMID: 35433491 PMCID: PMC9005831 DOI: 10.3389/fonc.2022.827051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a poor prognosis. More effective biomarkers and treatment options remain to be discovered. Mitotic Spindle Positioning (MISP), also called C19orf21, has been reported to be upregulated in several malignancies. However, the effects of MISP on PDAC have yet to be investigated. Materials and Methods The differential expression of MISP at the mRNA and protein levels were evaluated using Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), Gene Expression Omnibus (GEO), and the Human Protein Atlas (HPA) databases, and was further verified by quantitative real-time PCR and western blotting in PDAC cell lines. Correlations between MISP expression and clinical characteristics were explored using Kaplan-Meier Plotter Database and clinical data from The Cancer Genome Atlas (TCGA). CCK-8 assays, Transwell assays, and immunoblotting were used to determine the role of MISP in PDAC proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were executed by the R package ‘clusterProfiler’. Correlations between MISP expression and immune cell infiltration, immune checkpoints, immunophenoscore (IPS) and the tumor mutational burden (TMB) in PDAC were explored using the R package ‘CIBERSORT’, the Tumor Immune Estimation Resource 2.0 (TIMER2.0), and The Cancer Immunome Atlas (TCIA) database based on TCGA data. Result MISP expression was significantly higher in pancreatic cancer tissues compared to normal pancreas tissues, which was associated with a poor prognosis. Increased expression of MISP was related to the proliferation, migration and invasion of PDAC cell lines. GO and KEGG pathway analyses determined that MISP is involved in the Ras signaling pathway and immune regulation. Higher expression of MISP was associated with decreased infiltration levels of activated CD4+ memory T cells, CD8+ T cells, M2 macrophages and neutrophils. Furthermore, increased MISP was associated with lower expression of immune checkpoint molecules, higher gene mutation burden and IPS. Conclusions This study reveals that MISP, which is associated with the progression and prognosis of PDAC, may exert a potential regulatory effect on immune infiltration and predict the response to immunotherapy in PDAC.
Collapse
Affiliation(s)
- Xinyang Huang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangchao Zhao
- Department of General Surgery, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixun Jin
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoxin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Li
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Sun MC, Fang K, Li ZX, Chu Y, Xu AP, Zhao ZY, Leng ZY, Zhang YW, Zhang ZH, Zhang L, Chen T, Xu MD. ETV5 overexpression promotes progression of esophageal squamous cell carcinoma by upregulating SKA1 and TRPV2. Int J Med Sci 2022; 19:1072-1081. [PMID: 35813298 PMCID: PMC9254378 DOI: 10.7150/ijms.71892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/30/2022] [Indexed: 01/23/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is notorious for the rapid progression especially early tumor metastasis due to the unclear mechanism. Recently, ETV5 attracts much attention for its potential role as an oncogenic transcription factor involved in multiple cancers. However, no one reported the mechanism behind the association between ETV5 expression and esophageal squamous cell carcinoma progression. In this study, we found that ETV5 was upregulated in ESCC both from online database and our ESCC tissues and ETV5 was associated with tumor staging and prognosis. Knockdown of ETV5 or its downstream genes SKA1 and TRPV2 significantly suppress ESCC cells migration and invasion, respectively. Additionally, in vivo study showed knockdown of ETV5 inhibited tumor metastasis. Further experiments unveiled ETV5 could transcriptionally upregulate the expression of SKA1 and TRPV2 and further activate MMPs in ESCC progression. In conclusion, ETV5 was associated with ESCC tumor staging and ESCC prognosis clinically. ETV5 promoted metastasis of ESCC by activating MMPs through augmenting the transcription of SKA1 and TRPV2. ETV5 was likely to be a novel oncogene and therapeutic target in ESCC.
Collapse
Affiliation(s)
- Ming-Chuang Sun
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Kang Fang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhao-Xing Li
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yuan Chu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ai-Ping Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zi-Ying Zhao
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Zhu-Yun Leng
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Yun-Wei Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Ze-Hua Zhang
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Li Zhang
- Department of Pathology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Tao Chen
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Mei-Dong Xu
- Endoscopy Center, Department of Gastroenterology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| |
Collapse
|
12
|
Ding J, He X, Wang J, Cao G, Chen S, Yuan L, Chen B, Xiong M. Integrative analysis of prognostic value and immune infiltration of spindle and kinetochore-associated family members in breast cancer. Bioengineered 2021; 12:10905-10923. [PMID: 34845974 PMCID: PMC8809973 DOI: 10.1080/21655979.2021.1995576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Spindle and kinetochore associated (SKA) complex subunit, which maintains the stability of mitotic metaphase, with emerging research implying its effect as a carcinogenic regulator in cancer. However, its potential role in BC has not been fully elucidated. ONCOMINE, UALCAN, GEPIA, Kaplan-Meier Plotter, cBioPortal and TIMER databases were performed to analyze the expression, prognosis, mutation, immune infiltration and potential biological mechanisms of SKA1/2/3 in BC. Our results showed that SKA1/2/3 expression was upregulated in BC. Survival analysis reveals that SKA3 overexpression was associated with poor overall survival (OS), relapse-free survival (RFS), post-progression survival (PPS) and distant metastasis-free survival (DMFS). SKA1 overexpression was associated with poor OS, RFS and DMFS while SKA2 overexpression was only associated with RFS and DMFS. Notably, the results implied that SKA1 has a good prognostic value in HER2-positive BC. Besides, the genetic alterations of SKA were investigated and the altered group correlated with shorter progress-free survival (PFS) and disease-specific survival (DSS). GO and KEGG analysis showed that SKA1/2/3 were implicated in regulating cell cycle, p53 signaling pathway and DNA replication. The 10 Hub genes in the protein network were upregulated in BC and related to poorer prognosis. Additionally, SKA1/2/3 expression was negatively correlated with infiltration of various immune cells with antitumor effects, whereas positively correlated with the expression of immune checkpoints molecules. Further experiments revealed that SKA1/2/3 silencing markedly impeded the proliferation and migration of BC cells. Herein, our study firmly shows that SKA genes may serve as a promising therapeutic target for patients with BC.
Collapse
Affiliation(s)
- Jianfeng Ding
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of General Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, China
| | - Xiaobo He
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jinkun Wang
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guodong Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sihan Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liping Yuan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bo Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Maoming Xiong
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of General Surgery, Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, China
| |
Collapse
|
13
|
Bai S, Chen W, Zheng M, Wang X, Peng W, Zhao Y, Wang Y, Xiong S, Cheng B. Spindle and kinetochore-associated complex subunit 3 (SKA3) promotes stem cell-like properties of hepatocellular carcinoma cells through activating Notch signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1361. [PMID: 34733913 PMCID: PMC8506556 DOI: 10.21037/atm-21-1572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/23/2021] [Indexed: 12/28/2022]
Abstract
Background Cancer stemness contributes to hepatocellular carcinoma (HCC) initiation, metastasis, drug resistance, and recurrence. The spindle and kinetochore-associated (SKA) complex has been shown to be involved in tumor progression; however, its effects on cancer stem cell-like properties have not yet been examined. This research sought to study each subunit of the SKA complex in HCC systematically. Methods Bioinformatic analyses were carried out to examine the expression and clinical data of the SKA complex’s each subunit in HCC. The expression of the target genes was detected by quantitative reverse transcription-polymerase chain reaction and Western blot assays. Clone formation and Transwell assays were performed to assess the proliferation and migration abilities of the SKA complex’s each subunit. Sphere formation assays and subcutaneous xenograft experiments were performed to investigate the effects of SKA complex subunit 3 (SKA3) on the self-renewal and tumorigenic abilities of HCC. Results Each subunit of the SKA complex was highly expressed in HCC, but only SKA complex subunit 1 (SKA1) and SKA3 were associated with the poor overall survival of HCC patients. Additionally, the HCC cells overexpressing SKA3 exhibited increased migration, invasion, proliferation, self-renewal, Sorafenib resistance and tumorigenic abilities. Notch signaling played a vital role in the process by which SKA3 promoted HCC stemness. Conclusions SKA3 promotes HCC stem cell-like properties via the Notch signaling pathway. As SKA3 appears to act as a regulator of stemness in HCC, it might be a potential molecular target for HCC.
Collapse
Affiliation(s)
- Shuya Bai
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Chen
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengli Zheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiju Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Digestive Endoscopy, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wang Peng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuchong Zhao
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Wang
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Xiong
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Cheng
- Department of Gastroenterology and Hepatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021; 49:1425-1442. [PMID: 34196668 PMCID: PMC8412110 DOI: 10.1042/bst20200557] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Collapse
|
15
|
Shen D, Zhao HY, Gu AD, Wu YW, Weng YH, Li SJ, Song JY, Gu XF, Qiu J, Zhao W. miRNA-10a-5p inhibits cell metastasis in hepatocellular carcinoma via targeting SKA1. Kaohsiung J Med Sci 2021; 37:784-794. [PMID: 34002462 DOI: 10.1002/kjm2.12392] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
A variety of microRNAs (miRNAs) are involved in the occurrence and development of hepatocellular carcinoma (HCC). However, the role of miR-10a-5p in the progression of HCC remains unclear. Therefore, the purpose of this study was to determine the role of miR-10a-5p in the development of HCC and the possible molecular mechanism. miR-10a-5p expression in HCC tissues and plasma from patients was detected by quantitative real-time polymerase chain reaction. Migratory changes in HCC cells were detected after the overexpression of miR-10a-5p. Epithelial-mesenchymal transition (EMT)-related proteins were detected by Western blot. Finally, through luciferase assay and rescue experiments, the mechanism by which miR-10a-5p regulates its downstream gene, human spindle and kinetochore-associated complex subunit 1, SKA1 and the interaction between these molecules in the development of HCC were determined. The expression of miR-10a-5p was markedly downregulated in HCC tissues, cell lines, and plasma. The overexpression of miR-10a-5p significantly inhibited the migration, invasion, and EMT of HCC cells. Furthermore, SKA1 was shown to be a downstream gene of miR-10a-5p. SKA1 silencing had the same effect as miR-10a-5p overexpression in HCC. In particular, the overexpression of SKA1 reversed the inhibitory effects of miR-10a-5p in HCC. Taken together, low miR-10a-5p expression is associated with HCC progression. miR-10a-5p inhibits the malignant development of HCC by negatively regulating SKA1.
Collapse
Affiliation(s)
- Duo Shen
- Medical School, Southeast University, Nanjing, China
| | - Hong-Yu Zhao
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ai-Dong Gu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yin-Wei Wu
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Hang Weng
- Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Jie Li
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin-Yun Song
- Department of Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xue-Feng Gu
- Medical School, Southeast University, Nanjing, China
| | - Jie Qiu
- Medical School, Southeast University, Nanjing, China.,Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Zhao
- Medical School, Southeast University, Nanjing, China.,Department of Hepatology, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
16
|
Audano M, Pedretti S, Ligorio S, Crestani M, Caruso D, De Fabiani E, Mitro N. "The Loss of Golden Touch": Mitochondria-Organelle Interactions, Metabolism, and Cancer. Cells 2020; 9:cells9112519. [PMID: 33233365 PMCID: PMC7700504 DOI: 10.3390/cells9112519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria represent the energy hub of cells and their function is under the constant influence of their tethering with other subcellular organelles. Mitochondria interact with the endoplasmic reticulum, lysosomes, cytoskeleton, peroxisomes, and nucleus in several ways, ranging from signal transduction, vesicle transport, and membrane contact sites, to regulate energy metabolism, biosynthetic processes, apoptosis, and cell turnover. Tumorigenesis is often associated with mitochondrial dysfunction, which could likely be the result of an altered interaction with different cell organelles or structures. The purpose of the present review is to provide an updated overview of the links between inter-organellar communications and interactions and metabolism in cancer cells, with a focus on mitochondria. The very recent publication of several reviews on these aspects testifies the great interest in the area. Here, we aim at (1) summarizing recent evidence supporting that the metabolic rewiring and adaptation observed in tumors deeply affect organelle dynamics and cellular functions and vice versa; (2) discussing insights on the underlying mechanisms, when available; and (3) critically presenting the gaps in the field that need to be filled, for a comprehensive understanding of tumor cells’ biology. Chemo-resistance and druggable vulnerabilities of cancer cells related to the aspects mentioned above is also outlined.
Collapse
Affiliation(s)
| | | | | | | | | | - Emma De Fabiani
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| | - Nico Mitro
- Correspondence: (E.D.F.); (N.M.); Tel.: +39-02-503-18329 (E.D.F.); +39-02-503-18253 (N.M.)
| |
Collapse
|
17
|
Li T, Liu X, Xu B, Wu W, Zang Y, Li J, Wei L, Qian Y, Xu H, Xie M, Wang Q, Wang L. SKA1 regulates actin cytoskeleton remodelling via activating Cdc42 and influences the migration of pancreatic ductal adenocarcinoma cells. Cell Prolif 2020; 53:e12799. [PMID: 32232899 PMCID: PMC7162805 DOI: 10.1111/cpr.12799] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/08/2020] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Objectives Spindle and kinetochore–associated protein 1(SKA1), originally identified as a protein essential for proper chromosome segregation, has been recently linked to multiple malignancies. This study aimed to explore the biological, clinical role and molecular mechanism of SKA1 in pancreatic carcinogenesis. Materials and Methods SKA1 expression was detected in 145 pancreatic ductal adenocarcinoma (PDAC) specimens by immunohistochemistry. Biological behaviour assays were used to determine the role of SKA1 in PDAC progression in vitro and in vivo. Using isobaric tags for relative and absolute quantitation (iTRAQ), SKA1’s downstream proteins were examined. Moreover, cytochalasin B and ZCL278 were used to explore the changes of SKA1‐induced signalling and cell morphology, with further confirmation by immunoblotting and immunofluorescence assays. Results Increased SKA1 expression was significantly correlated with tumour size and cellular differentiation degree in PDAC tissues. Furthermore, elevated levels of SKA1 reflected shorter overall survival (P = .019). As for biological behaviour, SKA1 acted as a tumour promotor in PDAC, overexpression of SKA1 facilitates cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, we demonstrated that SKA1 enhanced pancreatic cancer aggressiveness by inhibiting G2/M arrest and regulating actin cytoskeleton organization via activating Cdc42. Conclusions This study revealed novel roles for SKA1 as an important regulator of actin cytoskeleton organization and an oncogene in PDAC cells, which may provide insights into developing novel therapeutics.
Collapse
Affiliation(s)
- Tong Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Liu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Xu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Xu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingping Xie
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|