1
|
Li J, Chen Q, Gu H. M2 microglia-derived exosomes reduce neuronal ferroptosis via FUNDC1-mediated mitophagy by activating AMPK/ULK1 signaling. Sci Rep 2025; 15:17955. [PMID: 40410395 PMCID: PMC12102263 DOI: 10.1038/s41598-025-03091-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 05/19/2025] [Indexed: 05/25/2025] Open
Abstract
Neuronal ferroptosis plays a vital role in the progression of neonatal hypoxic-ischemic brain damage (HIBD). M2-type microglia-derived exosomes (M2-exos) have been shown to protect neurons from ischemia-reperfusion (I/R) brain injury, but their impact on I/R-induced neuronal ferroptosis and the underlying mechanisms remain poorly understood. In this study, we used an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model in HT-22 neuronal cells to investigate how M2-exos modulate ferroptosis. We found that M2-exos were internalized by HT-22 cells and significantly attenuated OGD/R-induced ferroptosis. Mechanistically, M2-exos enhanced mitophagy, which was mediated by the upregulation of FUN14 domain-containing protein 1 (FUNDC1), thereby inhibiting ferroptosis. Further analysis revealed that M2-exos activated FUNDC1-dependent mitophagy through the AMP-activated protein kinase (AMPK)/UNC-51-like kinase 1 (ULK1) signaling pathway. Taken together, these findings suggest that M2-exos ameliorate I/R-induced neuronal ferroptosis by enhancing FUNDC1-mediated mitophagy through the activation of AMPK/ULK1 signaling pathway.
Collapse
Affiliation(s)
- Jian Li
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 the Yellow River West Road, Huaiyin District, Huai'an City, 223300, Jiangsu Province, China
| | - Qing Chen
- Department of Anesthesiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 the Yellow River West Road, Huaiyin District, Huai'an City, 223300, Jiangsu Province, China
| | - Hao Gu
- Department of Pediatrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 the Yellow River West Road, Huaiyin District, Huai'an City, 223300, Jiangsu Province, China.
| |
Collapse
|
2
|
Wen S, Zhao Y, Wang L, Yuan Y. Daidzein Attenuates Cadmium-Induced Neurotoxicity via Inhibiting Apoptosis and Mitophagy in the Cerebral Cortex of Sprague-Dawley Rats. J Biochem Mol Toxicol 2025; 39:e70299. [PMID: 40358926 DOI: 10.1002/jbt.70299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 03/31/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Cadmium (Cd), a prevalent environmental pollutant, is of significant concern owing to its neurotoxicity; thus, the identification of effective interventions for nerve injury caused by Cd is crucial. Mitochondrial signaling pathway-mediated apoptosis and PTEN-induced putative kinase protein 1 (PINK1)/E3 ubiquitin ligase (Parkin)-mediated mitophagy are the primary mechanisms responsible for the neurotoxic effects of Cd. Daidzein (Dz), a naturally occurring isoflavone found in leguminous plants, exhibits a wide range of pharmacological effects in the brain. To investigate the short-term protective effects of Dz against Cd-induced neurotoxicity in the rat cerebral cortex, 24 male Sprague-Dawley rats were treated with Dz (100 mg/kg) and/or CdCl2 (2 mg/kg) for 12 days. Histological changes in the cerebral cortex were assessed by Nissl staining. Apoptosis- and mitophagy-related indices were detected using TUNEL staining, western blotting, and immunofluorescence assays. The administration of Dz attenuated Cd-induced nerve injury. Additionally, Dz reduced cell apoptosis by 66%, and the expression of apoptosis-related proteins Bax/Bcl-2 ratio by 27%, cleaved caspase-9 by 42%, and cleaved caspase-3 by 42%. Dz also decreased the expression of the mitophagy-related proteins LC3 by 35%, PINK1 by 37%, and Parkin by 29%, and increased that of COX IV by 36%. Furthermore, Dz abolished the Cd-induced colocalization of PINK1 and Parkin in the cerebral cortex of rats. In summary, our results indicate that Dz exerts neuroprotective effects in the cerebral cortex of rats by inhibiting mitochondrial signaling pathway-mediated apoptosis and PINK1/Parkin-mediated mitophagy. Therefore, Dz is a promising novel neuroprotective agent. However, some challenges remain, such as efficacy, bioavailability, and potential side effects. Further studies are needed to assess its potential as a therapeutic agent for Cd-induced neurotoxicity in humans.
Collapse
Affiliation(s)
- Shuangquan Wen
- Suzhou Chien-Shiung Institute of Technology, Taicang, PR China
| | - Yu Zhao
- Suzhou Chien-Shiung Institute of Technology, Taicang, PR China
| | - Liang Wang
- Suzhou Chien-Shiung Institute of Technology, Taicang, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| |
Collapse
|
3
|
Yuan J, Zhang K, Yang L, Cheng X, Chen J, Guo X, Cao H, Zhang C, Xing C, Hu G, Zhuang Y. Luteolin attenuates LPS-induced damage in IPEC-J2 cells by enhancing mitophagy via AMPK signaling pathway activation. Front Nutr 2025; 12:1552890. [PMID: 40206944 PMCID: PMC11978636 DOI: 10.3389/fnut.2025.1552890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025] Open
Abstract
Background Luteolin (LUT), a flavonoid compound widely present in natural plants, has been extensively studied for its diverse biological properties, involving anti-inflammatory,antioxidant, anti-apoptosis and other properties. Methods The aim of this study was to investigate the effect of LUT on lipopolysaccharide (LPS)-induced Intestinal Porcine Epithelial Cell line-J2 (IPEC-J2 cells) damage and its underlying mechanism. Results The experiment showed that LPS treatment induced injury in IPEC-J2 cells, leading to tight junction disruption, ROS accumulation, and cell apoptosis. Remarkably, LUT attenuated LPS-induced IPEC-J2 cells damage by the up-regulation of Zonula Occludens-1(ZO-1), Occludin, and Claudin protein 1 (Claudin-1) protein expression levels.Besides, LUT increased the activities of CAT, and SOD and prevented LPS-induced MDA and ROS production. LUT suppressed Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation in LPS-induced IPEC-J2 cells, reducing (Interleukin-1beta) IL-1β and Interleukin-6 (IL-6) expression. Moreover, LUT attenuated LPS-induced apoptosis in IPEC-J2 cells by up-regulating expression of B-cell lymphoma 2 (Bcl-2) and down-regulating expression of Cysteine-aspartic acid protease 3 (Caspase-3), Cysteine - aspartic acid protease 9 (Caspase-9) and Bcl-2-associated X protein (Bax). Furthermore, LUT upregulated the AMP-activated protein kinase (AMPK)/Unc-51 like autophagy activating kinase (ULK) signaling pathway and Parkin-RBR E3 ubiquitin protein ligase (Parkin)/PTEN induced putative kinase 1 (PINK1)-mediated mitophagy in a dose-dependent manner. When AMPK was knocked down by short-hairpin RNA (shRNA), the protective effects of LUT against LPS-induced IPEC-J2 cell damage were weakened, as evidenced by the accumulation of excessive ROS and impaired mitophagy. Conclusion In summary, LUT exhibits the ability to protect against LPS-induced damage to intestinal tight junctions by enhancing mitophagy through AMPK activation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Solana-Manrique C, Sánchez-Pérez AM, Paricio N, Muñoz-Descalzo S. Two- and Three-Dimensional In Vitro Models of Parkinson's and Alzheimer's Diseases: State-of-the-Art and Applications. Int J Mol Sci 2025; 26:620. [PMID: 39859333 PMCID: PMC11766061 DOI: 10.3390/ijms26020620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
In vitro models play a pivotal role in advancing our understanding of neurodegenerative diseases (NDs) such as Parkinson's and Alzheimer's disease (PD and AD). Traditionally, 2D cell cultures have been instrumental in elucidating the cellular mechanisms underlying these diseases. Cultured cells derived from patients or animal models provide valuable insights into the pathological processes at the cellular level. However, they often lack the native tissue environment complexity, limiting their ability to fully recapitulate their features. In contrast, 3D models offer a more physiologically relevant platform by mimicking the 3D brain tissue architecture. These models can incorporate multiple cell types, including neurons, astrocytes, and microglia, creating a microenvironment that closely resembles the brain's complexity. Bioengineering approaches allow researchers to better replicate cell-cell interactions, neuronal connectivity, and disease-related phenotypes. Both 2D and 3D models have their advantages and limitations. While 2D cultures provide simplicity and scalability for high-throughput screening and basic processes, 3D models offer enhanced physiological relevance and better replicate disease phenotypes. Integrating findings from both model systems can provide a better understanding of NDs, ultimately aiding in the development of novel therapeutic strategies. Here, we review existing 2D and 3D in vitro models for the study of PD and AD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain;
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Europea de Valencia, Paseo de la Alameda 7, 46010 Valencia, Spain
| | - Ana María Sánchez-Pérez
- Instituto de Materiales Avanzados (INAM), Universidad de Jaume I, Avda Sos Banyat s/n, 12071 Castellón de la Plana, Spain;
| | - Nuria Paricio
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain;
- Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universidad de Valencia, Calle Doctor Moliner 50, 46100 Burjassot, Spain
| | - Silvia Muñoz-Descalzo
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Universidad Las Palmas de Gran Canaria (ULPGC), Paseo Blas Cabrera Felipe “Físico” 17, 35016 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
5
|
Gao Y, Liu H, Zhou Y, Cai S, Zhang J, Sun J, Duan M. Cold inducible RNA binding protein-regulated mitochondria associated endoplasmic reticulum membranes-mediated Ca 2+ transport play a critical role in hypothermia cerebral resuscitation. Exp Neurol 2024; 379:114883. [PMID: 38992825 DOI: 10.1016/j.expneurol.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Cardiac arrest is a global health issue causing more deaths than many other diseases. Hypothermia therapy is commonly used to treat secondary brain injury resulting from cardiac arrest. Previous studies have shown that CIRP is induced in specific brain regions during hypothermia and inhibits mitochondrial apoptotic factors. However, the specific mechanisms by which hypothermia-induced CIRP exerts its anti-apoptotic effect are still unknown. This study aims to investigate the role of Cold-inducible RNA-binding protein (CIRP) in mitochondrial-associated endoplasmic reticulum membrane (MAM)-mediated Ca2+ transport during hypothermic brain resuscitation.We constructed a rat model of cardiac arrest and resuscitation and hippocampal neuron oxygen-glucose deprivation/reoxygenation model. We utilized shRNA transfection to interfere the expression of CIRP and observe the effect of CIRP on the structure and function of MAM.Hypothermia induced CIRP can reduce the apoptosis of hippocampal neurons, and improve the survival rate of rats. Hypothermia induced CIRP can reduce the expressions of calcium transporters IP3R and VDAC1 in MAM, reduce the concentration of calcium in mitochondria, decrease the expression of ROS, and stabilize the mitochondrial membrane potential. Immunofluorescence and immunocoprecipitation showed that CIRP could directly interact with IP3R-VDAC1 complex, thereby changing the structure of MAM, inhibiting calcium transportation and improving mitochondrial function in vivo and vitro.Both in vivo and in vitro experiments have confirmed that hypothermia induced CIRP can act on the calcium channel IP3R-VDAC1 in MAM, reduce the calcium overload in mitochondria, improve the energy metabolism of mitochondria, and thus play a role in neuron resuscitation. This study contributes to understanding hypothermia therapy and identifies potential targets for brain injury treatment.
Collapse
Affiliation(s)
- Yu Gao
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China
| | - Haoxin Liu
- Department of Anesthesiology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China
| | - Yaqing Zhou
- Department of Pain Management, Affiliated Hospital of Jiangnan University, Wuxi 214000, Jiangsu, China
| | - Shenquan Cai
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu, China
| | - Jie Zhang
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital Southeast University, Nanjing 210000, Jiangsu, China.
| | - Manlin Duan
- Department of Anesthesiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, Jiangsu, China; Department of Anesthesiology, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
6
|
Zhang H, Yan J, Xie D, Zhu X, Nie G, Zhang H, Li X. Selenium restored mitophagic flux to alleviate cadmium-induced hepatotoxicity by inhibiting excessive GPER1-mediated mitophagy activation. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134855. [PMID: 38880044 DOI: 10.1016/j.jhazmat.2024.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a common environmental pollutant, while selenium (Se) can ameliorate heavy metal toxicity. Consequently, this study aimed to investigate the protective effects of Se against Cd-induced hepatocyte injury and its underlying mechanisms. To achieve this, we utilized the Dongdagou-Xinglong cohort, BRL3A cell models, and a rat model exposed to Cd and/or Se. The results showed that Se counteracted liver function injury and the decrease in GPER1 levels caused by environmental Cd exposure, and various methods confirmed that Se could protect against Cd-induced hepatotoxicity both in vivo and in vitro. Mechanistically, Cd caused excessive mitophagy activation, evidenced by the colocalization of LC3B, PINK1, Parkin, P62, and TOMM20. Transfection of BRL3A cells with mt-keima adenovirus indicated that Cd inhibited autophagosome-lysosome fusion, thereby impeding mitophagic flux. Importantly, G1, a specific agonist of GPER1, mitigated Cd-induced mitophagy overactivation and hepatocyte toxicity, whereas G15 exacerbates these effects. Notably, Se supplementation attenuated Cd-induced GPER1 protein reduction and excessive mitophagy activation while facilitating autophagosome-lysosome fusion, thereby restoring mitophagic flux. In conclusion, this study proposed a novel mechanism whereby Se alleviated GPER1-mediated mitophagy and promoted autophagosome-lysosome fusion, thus restoring Cd-induced mitophagic flux damage, and preventing hepatocyte injury.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xingwang Zhu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Haijun Zhang
- Department of Anesthesiology and Operating Theater, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; Medical School Cancer Center of Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China; General Surgery Clinical Medical Research Center of Gansu Province, Lanzhou 730000, Gansu, People's Republic of China.
| |
Collapse
|
7
|
Liu J, Gao Z, Liu X. Mitochondrial dysfunction and therapeutic perspectives in osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1325317. [PMID: 38370357 PMCID: PMC10870151 DOI: 10.3389/fendo.2024.1325317] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disorder characterized by reduced bone mass and structural deterioration of bone tissue, resulting in heightened vulnerability to fractures due to increased bone fragility. This condition primarily arises from an imbalance between the processes of bone resorption and formation. Mitochondrial dysfunction has been reported to potentially constitute one of the most crucial mechanisms influencing the pathogenesis of osteoporosis. In essence, mitochondria play a crucial role in maintaining the delicate equilibrium between bone formation and resorption, thereby ensuring optimal skeletal health. Nevertheless, disruption of this delicate balance can arise as a consequence of mitochondrial dysfunction. In dysfunctional mitochondria, the mitochondrial electron transport chain (ETC) becomes uncoupled, resulting in reduced ATP synthesis and increased generation of reactive oxygen species (ROS). Reinforcement of mitochondrial dysfunction is further exacerbated by the accumulation of aberrant mitochondria. In this review, we investigated and analyzed the correlation between mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) alterations, oxidative phosphorylation (OXPHOS) impairment, mitophagy dysregulation, defects in mitochondrial biogenesis and dynamics, as well as excessive ROS accumulation, with regards to OP (Figure 1). Furthermore, we explore prospective strategies currently available for modulating mitochondria to ameliorate osteoporosis. Undoubtedly, certain therapeutic strategies still require further investigation to ensure their safety and efficacy as clinical treatments. However, from a mitochondrial perspective, the potential for establishing effective and safe therapeutic approaches for osteoporosis appears promising.
Collapse
Affiliation(s)
- Jialing Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhonghua Gao
- School of Medicine, Ezhou Vocational University, Ezhou, China
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Zhou TY, Ma RX, Li J, Zou B, Yang H, Ma RY, Wu ZQ, Li J, Yao Y. Review of PINK1-Parkin-mediated mitochondrial autophagy in Alzheimer's disease. Eur J Pharmacol 2023; 959:176057. [PMID: 37751832 DOI: 10.1016/j.ejphar.2023.176057] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023]
Abstract
Mitochondrial autophagy plays an important role in maintaining the complexity of mitochondrial functions and removing damaged mitochondria, of which the PINK1-Parkin signal pathway is one of the most classical pathways. Thus, a comprehensive and in-depth interpretation of the PINK1-Parkin signal pathway might deepen our understanding on the impacts of mitochondrial autophagy. Alzheimer's disease (AD) is a classical example of neurodegenerative disease. Research on the pathogenesis and treatments of AD has been a focus of scientific research because of its complexity and the limitations of current drug therapies. It was reported that the pathogenesis of AD might be related to mitochondrial autophagy due to excessive deposition of Aβ protein and aggravation of the phosphorylation of Tau protein. Two key proteins in the PINK1-Parkin signaling pathway, PINK1 and Parkin, have important roles in the folding and accumulation of Aβ protein and the phosphorylation of Tau protein. In addition, the intermediate signal molecules in the PINK1-Parkin signal pathway also have certain effects on AD. In this paper, we first described the role of PINK1-Parkin signal pathway on mitochondrial autophagy, then discussed and analyzed the effect of the PINK1-Parkin signal pathway in AD and other metabolic diseases. Our aim was to provide a theoretical direction to further elucidate the pathogenesis of AD and highlight the key molecules related to AD that could be important targets used for AD drug development.
Collapse
Affiliation(s)
- Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Hui Yang
- Research Center of Medical Science and Technology, Ningxia Medical University, Yinchuan, 750004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Li AL, Lian L, Chen XN, Cai WH, Fan XB, Fan YJ, Li TT, Xie YY, Zhang JP. The role of mitochondria in myocardial damage caused by energy metabolism disorders: From mechanisms to therapeutics. Free Radic Biol Med 2023; 208:236-251. [PMID: 37567516 DOI: 10.1016/j.freeradbiomed.2023.08.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Myocardial damage is the most serious pathological consequence of cardiovascular diseases and an important reason for their high mortality. In recent years, because of the high prevalence of systemic energy metabolism disorders (e.g., obesity, diabetes mellitus, and metabolic syndrome), complications of myocardial damage caused by these disorders have attracted widespread attention. Energy metabolism disorders are independent of traditional injury-related risk factors, such as ischemia, hypoxia, trauma, and infection. An imbalance of myocardial metabolic flexibility and myocardial energy depletion are usually the initial changes of myocardial injury caused by energy metabolism disorders, and abnormal morphology and functional destruction of the mitochondria are their important features. Specifically, mitochondria are the centers of energy metabolism, and recent evidence has shown that decreased mitochondrial function, caused by an imbalance in mitochondrial quality control, may play a key role in myocardial injury caused by energy metabolism disorders. Under chronic energy stress, mitochondria undergo pathological fission, while mitophagy, mitochondrial fusion, and biogenesis are inhibited, and mitochondrial protein balance and transfer are disturbed, resulting in the accumulation of nonfunctional and damaged mitochondria. Consequently, damaged mitochondria lead to myocardial energy depletion and the accumulation of large amounts of reactive oxygen species, further aggravating the imbalance in mitochondrial quality control and forming a vicious cycle. In addition, impaired mitochondria coordinate calcium homeostasis imbalance, and epigenetic alterations participate in the pathogenesis of myocardial damage. These pathological changes induce rapid progression of myocardial damage, eventually leading to heart failure or sudden cardiac death. To intervene more specifically in the myocardial damage caused by metabolic disorders, we need to understand the specific role of mitochondria in this context in detail. Accordingly, promising therapeutic strategies have been proposed. We also summarize the existing therapeutic strategies to provide a reference for clinical treatment and developing new therapies.
Collapse
Affiliation(s)
- Ao-Lin Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lu Lian
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Nong Chen
- Department of Traditional Chinese Medicine, Tianjin First Central Hospital, Tianjin, 300190, China
| | - Wen-Hui Cai
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Xin-Biao Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ya-Jie Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ting-Ting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China; Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Ying-Yu Xie
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Jun-Ping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, China.
| |
Collapse
|
10
|
Hamzeh O, Rabiei F, Shakeri M, Parsian H, Saadat P, Rostami-Mansoor S. Mitochondrial dysfunction and inflammasome activation in neurodegenerative diseases: Mechanisms and therapeutic implications. Mitochondrion 2023; 73:S1567-7249(23)00087-9. [PMID: 39492438 DOI: 10.1016/j.mito.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/02/2023] [Accepted: 10/28/2023] [Indexed: 11/05/2024]
Abstract
Impaired mitochondrial function is crucial to the pathogenesis of several neurodegenerative diseases. It causes the release of mitochondrial DNA (mtDNA), mitochondrial reactive oxygen species (mtROS), ATP, and cardiolipin, which activate the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome. NLRP3 inflammasome is an important innate immune system element contributing to neuroinflammation and neurodegeneration. Therefore, targeting the NLRP3 inflammasome has become an interesting therapeutic approach for treating neurodegenerative diseases. This review describes the role of mitochondrial abnormalities and over-activated inflammasomes in the progression of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple sclerosis (MS), Amyotrophic lateral sclerosis (ALS), and Friedrich ataxia (FRDA). We also discuss the therapeutic strategies focusing on signaling pathways associated with inflammasome activation, which potentially alleviate neurodegenerative symptoms and impede disease progression.
Collapse
Affiliation(s)
- Olia Hamzeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Rabiei
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Shakeri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Sahar Rostami-Mansoor
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
11
|
Isaev NK, Stelmashook EV, Genrikhs EE, Onishchenko GE. Interaction between mitophagy, cadmium and zinc. J Trace Elem Med Biol 2023; 79:127230. [PMID: 37290313 DOI: 10.1016/j.jtemb.2023.127230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Mitophagy is the selective degradation of mitochondria by autophagy. This process is considered to be one of the stages of mitochondrial quality control, as a result of which damaged depolarized mitochondria are eliminated, thus limiting the formation of reactive oxygen species and the release of apoptogenic factors. Selective degradation of mitochondria by autophagy is one of the main ways to protect cells from cadmium toxicity, which results in dysfunction of the mitochondrial electron transport chain, leading to electron leakage, production of reactive oxygen species and cells death. However, excessive autophagy can be dangerous for cells. Currently, the participation of cadmium ions in normal physiological processes has not been detected. Zn2+, unlike Cd2+, regulate the activity of a large number of functionally important proteins, including transcription factors, enzymes, and adapters. It has been shown that Zn2+ not only participate in autophagy, but are also crucial for basal or induced autophagy. It is likely that zinc drugs can be used to reduce the cadmium toxicity and in the regulation of mithophagy.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, Moscow, Russia; Research Center of Neurology, Moscow, Russia.
| | | | | | | |
Collapse
|
12
|
Tang Y, Zhang J, Hu Z, Xu W, Xu P, Ma Y, Xing H, Niu Q. PRKAA1 induces aberrant mitophagy in a PINK1/Parkin-dependent manner, contributing to fluoride-induced developmental neurotoxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114772. [PMID: 36924562 DOI: 10.1016/j.ecoenv.2023.114772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/02/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
Chronic fluoride exposure can cause developmental neurotoxicity, however the precise mechanisms remain unclear. To explore the mechanism of mitophagy in fluoride-induced developmental neurotoxicity, specifically focusing on PRKAA1 in regulating the PINK1/Parkin pathway, we established a Sprage Dawley rat model with continuous sodium fluoride (NaF) exposure and an NaF-treated SH-SY5Y cell model. We found that NaF exposure increased the levels of LC3-Ⅱ and p62, impaired autophagic degradation, and subsequently blocked autophagic flux. Additionally, NaF exposure increased the expression of PINK1, Parkin, TOMM-20, and Cyt C and cleaved PARP in vivo and in vitro, indicating NaF promotes mitophagy and neuronal apoptosis. Meanwhile, phosphoproteomics and western blot analysis showed that NaF treatment enhanced PRKAA1 phosphorylation. Remarkably, the application of both 3-methyladenosine (3-MA; autophagy inhibitor) and dorsomorphin (DM; AMPK inhibitor) suppressed NaF-induced neuronal apoptosis by restoring aberrant mitophagy. In addition, 3-MA attenuated an increase in p62 protein levels and NaF-induced autophagic degradation. Collectively, our findings indicated that NaF causes aberrant mitophagy via PRKAA1 in a PINK1/Parkin-dependent manner, which triggers neuronal apoptosis. Thus, regulating PRKAA1-activated PINK1/Parkin-dependent mitophagy may be a potential treatment for NaF-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Yanling Tang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Jingjing Zhang
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Zeyu Hu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Wanjing Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Panpan Xu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Yue Ma
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Hengrui Xing
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China
| | - Qiang Niu
- Department of Preventive Medicine, School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Preventive Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; Key Laboratory of Xinjiang Endemic and Ethnic Diseases (Ministry of Education), School of Medicine, Shihezi University, Shihezi, Xinjiang, People's Republic of China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University), People's Republic of China.
| |
Collapse
|
13
|
Chen N, Yan J, Hu Y, Hao L, Liu H, Yang H. Study of the mechanism underlying the role of PINK1/Parkin in the formic acid-induced autophagy of PC12 cells. Basic Clin Pharmacol Toxicol 2023; 132:329-342. [PMID: 36598398 DOI: 10.1111/bcpt.13833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
This study aimed to explore PINK1/Parkin's role in methanol metabolite formic acid-induced autophagy in PC12 cells and provide a theoretical basis for elucidating methanol-induced neurotoxicity. After treatment with different formic acid concentrations, we observed the morphology and mitochondria of PC12 cells. We used an ultra-micro enzyme kit to detect the mitochondrial Na+ -K+ -ATPase and Ca2+ -Mg2+ -ATPase activities; a JC-1 kit to detect changes in the mitochondrial membrane potential (MMP); MDC staining to detect the autophagy levels; and western blotting to measure the expression levels of the mitochondrial marker protein COX IV and the autophagy-related proteins Beclin1, P62 and LC3II/LC3I, and the mitochondrial and cytoplasmic levels of PINK1, Parkin and P-Parkin. Compared with the control group, the mitochondrial diameters, the mitochondrial Na+ -K+ -ATP and Ca2+ -Mg2+ -ATPase activities, the MMP, and the COX IV expression levels decreased significantly (P < 0.05). The fluorescence signal intensity (indicating autophagy); relative Beclin1 and LC3II/LC3I protein expression levels; and relative mitochondrial PINK1, Parkin and P-Parkin levels increased significantly, and the relative P62 protein expression levels and relative cytoplasmic PINK1, Parkin and P-Parkin levels decreased significantly (P < 0.05) compared with the control group. Thus, formic acid alters mitochondrial morphology, causes mitochondrial dysfunction, affects the PINK/Parkin pathway and, thus, activates the process of mitochondrial autophagy.
Collapse
Affiliation(s)
- Nan Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Jiao Yan
- Xi'an Chang'an District Center for Disease Control and Prevention, Xi'an, Shanxi, People's Republic of China
| | - Yundi Hu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Lele Hao
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Herong Liu
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| | - Huifang Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia, People's Republic of China.,Ningxia Key Laboratory of Environmental Factors and Chronic Disease Control, Yinchuan, Ningxia, People's Republic of China
| |
Collapse
|
14
|
Zhou X, Liu K, Li J, Cui L, Dong J, Li J, Meng X, Zhu G, Wang H. PINK1/Parkin-mediated mitophagy enhances the survival of Staphylococcus aureus in bovine macrophages. J Cell Mol Med 2023; 27:412-421. [PMID: 36625039 PMCID: PMC9889626 DOI: 10.1111/jcmm.17664] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Mitochondria are cellular organelles that are involved in various metabolic processes, and damage to mitochondria can affect cell health and even lead to disease. Mitophagy is a mechanism by which cells selectively wrap and degrade damaged mitochondria to maintain cell homeostasis. However, studies have not focused on whether mitophagy is involved in the occurrence of Staphylococcus aureus (S. aureus)-induced mastitis in dairy cows. Here, we found that S. aureus infection of bovine macrophages leads to oxidative damage and mitochondria damage. The expression of LC3, PINK1 and Parkin was significantly increased after intracellular infection. We observed changes in the morphology of mitochondria and the emergence of mitochondrial autolysosomes in bovine macrophages by transmission electron microscopy and found that enhanced mitophagy promoted bacterial proliferation in the cell. In conclusion, this study demonstrates that S. aureus infection of bovine macrophages induces mitophagy through the PINK1/Parkin pathway, and this mechanism is used by the bacteria to avoid macrophage-induced death. These findings provide new ideas and references for the prevention and treatment of S. aureus infection.
Collapse
Affiliation(s)
- Xi Zhou
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Kangjun Liu
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Jianji Li
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Luying Cui
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Junsheng Dong
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Jun Li
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Xia Meng
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Guoqiang Zhu
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| | - Heng Wang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary MedicineYangzhou UniversityYangzhouChina,Joint International Research Laboratory of Agriculture and Agri‐product Safety of the Ministry of EducationYangzhouChina
| |
Collapse
|
15
|
Guan Z, Chen J, Wang L, Hao M, Dong X, Luo T, Jiang J, Lin Z, Li X, Chen P, Yang Z, Ye X, Wang L, Xian S, Chen Z. Nuanxinkang prevents the development of myocardial infarction-induced chronic heart failure by promoting PINK1/Parkin-mediated mitophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154494. [PMID: 36279758 DOI: 10.1016/j.phymed.2022.154494] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Mitochondrial dysfunction is an important pathological feature of chronic heart failure (CHF). Regulation of mitophagy can effectively maintain mitochondrial homeostasis and energy metabolism, thereby inhibiting the development of CHF. Nuanxinkang (NXK), a Chinese herbal compound preparation, has significant cardioprotective effects on CHF; however, its underlying mechanism on mitophagy has not been completely clarified. This research intended to investigate the mechanism of NXK in treating myocardial infarction (MI)-induced CHF. METHODS The left anterior descending coronary artery (LAD) ligation surgery was performed to establish an MI-induced CHF model in male C57BL/6 mice. From 1 day after surgery, mice were given NXK (0.41, 0.82 or 1.65 g/kg/d), Perindopril (PDPL, 0.607 mg/kg/d), or an equivalent amount of sterile water by gavage for 28 continuous days. Then, mice were examined for cardiac function, myocardial fibrosis, cardiomyocyte apoptosis, mitochondrial structure and mitophagy levels of cardiomyocytes, etc. In addition, a hypoxic injury model was created using HL-1 cardiomyocytes from wild-type (WT) mice. HL-1 cells were pretreated with or without NXK-containing serum. Mitochondrial function and mitophagy levels were examined in HL-1 cells. RESULTS In MI-induced CHF mice, cardiac dysfunction, severe cardiac remodeling, elevated levels of oxidative stress, reduced ATP levels, and inhibition of PINK1/Parkin-mediated mitophagy were observed. High-dose NXK treatment (1.65 g/kg/d) significantly improved myocardial energy metabolism, inhibited cardiac remodeling, improved cardiac function, and restored cardiac PINK1/Parkin-mediated mitophagy levels to some extent in MI mice. In vitro, elevated levels of mitochondrial reactive oxygen species (ROS) with impaired mitochondrial membrane potential (ΔΨm) were observed in hypoxic HL-1 cells. While NXK treatment significantly protected cardiomyocytes from hypoxia-induced mitochondrial dysfunction, which is consistent with the in vivo results. Further studies showed that NXK could increase PINK1/Parkin-mediated mitophagy levels in cardiomyocytes, which could be blocked by the mitophagy inhibitor Mdivi-1. CONCLUSION In conclusion, NXK could prevent cardiac mitochondrial dysfunction and improve cardiac function against MI-induced CHF by promoting Pink1/Parkin-mediated mitophagy, which represents a very prospective strategy for the treatment of CHF.
Collapse
Affiliation(s)
- Zhuoji Guan
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan 523005, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Jie Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Linhai Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Mengjiao Hao
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Dong
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Tong Luo
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Jialin Jiang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Zhijun Lin
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Xuan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Pinliang Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Zhongqi Yang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China
| | - Xiaohan Ye
- Dongguan Hospital, Guangzhou University of Chinese Medicine, Dongguan 523005, China; Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China.
| | - Lingjun Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China.
| | - Shaoxiang Xian
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China.
| | - Zixin Chen
- Guangzhou University of Chinese Medicine, Guangzhou 510405, China; The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China; Guangzhou Key Laboratory of Chinese Medicine for Prevention and Treatment of Chronic Heart Failure, Guangzhou 510405, China.
| |
Collapse
|
16
|
Yan C, Shi Y, Yuan L, Lv D, Sun B, Wang J, Liu X, An F. Mitochondrial quality control and its role in osteoporosis. Front Endocrinol (Lausanne) 2023; 14:1077058. [PMID: 36793284 PMCID: PMC9922754 DOI: 10.3389/fendo.2023.1077058] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are important organelles that provide cellular energy and play a vital role in cell differentiation and apoptosis. Osteoporosis is a chronic metabolic bone disease mainly caused by an imbalance in osteoblast and osteoclast activity. Under physiological conditions, mitochondria regulate the balance between osteogenesis and osteoclast activity and maintain bone homeostasis. Under pathological conditions, mitochondrial dysfunction alters this balance; this disruption is important in the pathogenesis of osteoporosis. Because of the role of mitochondrial dysfunction in osteoporosis, mitochondrial function can be targeted therapeutically in osteoporosis-related diseases. This article reviews different aspects of the pathological mechanism of mitochondrial dysfunction in osteoporosis, including mitochondrial fusion and fission, mitochondrial biogenesis, and mitophagy, and highlights targeted therapy of mitochondria in osteoporosis (diabetes induced osteoporosis and postmenopausal osteoporosis) to provide novel targets and prevention strategies for the prevention and treatment of osteoporosis and other chronic bone diseases.
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- Research Center of Traditional Chinese Medicine of Gansu, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yao Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Donghui Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Bai Sun
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jiayu Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiyan Liu
- Internal Medicine, Northwestern University, Xian, Shanxi, China
- *Correspondence: Xiyan Liu, ; Fangyu An,
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Xiyan Liu, ; Fangyu An,
| |
Collapse
|
17
|
Xiao B, Cui Y, Li B, Zhang J, Zhang X, Song M, Li Y. ROS antagonizes the protection of Parkin-mediated mitophagy against aluminum-induced liver inflammatory injury in mice. Food Chem Toxicol 2022; 165:113126. [PMID: 35569598 DOI: 10.1016/j.fct.2022.113126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 12/15/2022]
Abstract
Aluminum (Al) is a food pollutant that has extensive deleterious effects on the liver. Our previous research proposed that E3 ubiquitin ligase PARK2 knockout (Parkin-/-) could aggravate Al-induced liver damage by inhibiting mitophagy, during which the reactive oxygen species (ROS) content increases. Inhibition of mitophagy can activate inflammasome. But the link between Parkin-mediated mitophagy and liver inflammatory injury caused by Al, and the role of ROS in it remain unclear. In this study, we applied Al, Parkin-/- and N-acetyl-L-cysteine (NAC) to act on C57BL/6N mice to investigate them. We found that Al could induce liver inflammatory injury and Parkin-/- could aggravate it. Meanwhile, inhibition of ROS alleviated oxidative stress, mitochondrial damage, mitophagy and inflammatory injury caused by Al in Parkin-/- mice liver. These results indicated that ROS antagonized the protection of Parkin-mediated mitophagy against Al-induced liver inflammatory damage in mice.
Collapse
Affiliation(s)
- Bonan Xiao
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yilong Cui
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xuliang Zhang
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Miao Song
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yanfei Li
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
18
|
Dong X, He X, Yang L, Li Q, Xu Y. Inhibition of miR-421 Preserves Mitochondrial Function and Protects against Parkinson's Disease Pathogenesis via Pink1/Parkin-Dependent Mitophagy. DISEASE MARKERS 2022; 2022:5186252. [PMID: 35664430 PMCID: PMC9162809 DOI: 10.1155/2022/5186252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 02/05/2023]
Abstract
Mutations in PINK1 and Parkin are a major cause of Parkinson's disease (PD) pathogenesis. In addition, PINK1 and Parkin are two mitochondrial proteins that jointly contribute to mitochondrial homeostasis via mitophagy. Mitochondrial dysfunction is the most significant mechanism underlying PD pathogenesis. Thus, understanding the regulatory mechanism of PINK1 and Parkin expression is beneficial to the treatment of PD. In this study, we found that miR-421 expression was upregulated in mice treated with MPTP, as well as in SH-SY5Y cells treated with methyl-4-phenylpyridine (MPP+). Inhibition of miR-421 alleviated neurodegeneration in MPTP-treated mice and promoted mitophagy in MPP+-treated SH-SY5Y cells. Bioinformatics software predicted that Pink1 is a downstream target protein of miR-421. In addition, miR-421-induced Pink1 and Parkin inhibition negatively modulates mitophagy in MPP+-treated SH-SY5Y cells. In addition, our study confirmed that Pink1/Parkin is responsible for miR-421-regulated cell mitophagy. Overall, this study revealed that miR-421 regulates nerve cell mitophagy through the Pink1/Parkin pathway.
Collapse
Affiliation(s)
- Xiaolin Dong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghua He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Li Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyun Li
- Department of Neurology, The Affiliated YanAn Hospital of Kunming Medical University, Kunming, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
20
|
Zhang H, Yan J, Xie Y, Chang X, Li J, Ren C, Zhu J, Ren L, Qi K, Bai Z, Li X. Dual role of cadmium in rat liver: Inducing liver injury and inhibiting the progression of early liver cancer. Toxicol Lett 2022; 355:62-81. [PMID: 34785185 DOI: 10.1016/j.toxlet.2021.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
The heavy metal cadmium (Cd) can induce damage in liver and liver cancer cells; however, the mechanism underlying its toxicity needs to be further verified in vivo. We daily administered CdCl2 to adult male rats at different dosages via gavage for 12 weeks and established rat liver injury model and liver cancer model to study the dual role of Cd in rat liver. Increased exposure to Cd resulted in abnormal liver function indicators, pathological degeneration, rat liver cell necrosis, and proliferation of collagen fibres. Using immunohistochemistry, we found that the area of GST-P-positive precancerous liver lesions decreased in a dose-dependent manner. Real-time quantitative polymerase chain reaction, western blot, immunohistochemistry, and transmission electron microscopy revealed that Cd induced mitophagy, as well as mitophagy blockade, as evidenced by the downregulation of TOMM20 and upregulation of LC3II and P62 with increasing Cd dose. Next, the expression of PINK1/Parkin, a classic signalling pathway protein that regulates mitophagy, was examined. Cd was found to promote PINK1/Parkin expression, which was proportional to the Cd dose. In conclusion, Cd activates PINK1/Parkin-mediated mitophagy in a dose-dependent manner. Mitophagy blockade likely aggravates Cd toxicity, leading to the dual role of inducing liver injury and inhibiting the progression of early liver cancer.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Ye Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, Gansu, People's Republic of China
| | - Chenghui Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Zhu
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of Pathology, Donggang District, First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Longfei Ren
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Kuo Qi
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China
| | - Zhongtian Bai
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
21
|
Wu Y, Yang F, Zhou G, Wang Q, Xing C, Bai H, Yi X, Xiong Z, Yang S, Cao H. Molybdenum and Cadmium Co-induce Mitochondrial Quality Control Disorder via FUNDC1-Mediated Mitophagy in Sheep Kidney. Front Vet Sci 2022; 9:842259. [PMID: 35155662 PMCID: PMC8831900 DOI: 10.3389/fvets.2022.842259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Molybdenum (Mo), fundamental trace mineral for animals and plants, but undue Mo damages animal health. Cadmium (Cd) is a toxic heavy metal that exists in the environment. Nevertheless, the mechanism of Mo and Cd on mitochondrial quality control are still indistinct. The objective of this research was to explore the effects of mitophagy on mitochondrial quality control via the FUNDC1-mediated by Mo and Cd in sheep kidney. Forty-eight 2-month-old sheep were stochastically divided into four groups, as shown below: control group, Mo [45 mg/kg body weight (BW)] group, Cd (1 mg/kg BW) group and Mo (45 mg/kg BW)+Cd (1 mg/kg BW) group, with 50 days feed technique. The results showed that Mo or/and Cd attract an unbalance of trace minerals and vacuoles and granular degeneration of renal tubular epithelial cells, and increase the number of mitophagosomes and vacuole-mitochondria and LC3 puncta and MDA and H2O2 contents, and decrease ATP content in the kidney. Moreover, Mo or/and Cd treatment could upregulate the mRNA levels of FUNDC1, LC3A, LC3B, PGAM5, DRP1, FIS1 and MFF, and the protein levels of FUNDC1, p-FUNDC1, LC3II/LC3I, DRP1, MFF and FIS1, downregulate the mRNA levels of MFN1, MFN2, OPA1, PGC-1α, SIRT1, SIRT3, FOXO1 and FOXO3, and the protein levels of MFN1, MFN2, OPA1 and PGC-1α. Notably, variations of above-mentioned factors in Mo and Cd group were more obvious than in Mo or Cd groups. Taken together, these results displayed that Mo and Cd co-treatment might induce mitochondrial quality control disorder via FUNDC1-mediated mitophagy in sheep kidney.
Collapse
Affiliation(s)
- Yunhui Wu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Guangbin Zhou
- Animal Epidemic Prevention and Quarantine Unit, Fengcheng Agricultural and Rural Bureau, Fengcheng, China
| | - Qi Wang
- Animal and Plant Quarantine Office, Nanchang Customs, Nanchang, China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - He Bai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Xin Yi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiwei Xiong
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shuqiu Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Huabin Cao
| |
Collapse
|
22
|
Wen S, Wang L, Wang T, Xu M, Zhang W, Song R, Zou H, Gu J, Bian J, Yuan Y, Liu Z. Puerarin alleviates cadmium-induced mitochondrial mass decrease by inhibiting PINK1-Parkin and Nix-mediated mitophagy in rat cortical neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113127. [PMID: 34979308 DOI: 10.1016/j.ecoenv.2021.113127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) has well-known central nervous system toxicity, and mitochondria are direct targets of Cd-induced neuronal toxicity. However, how Cd induces mitochondrial mass decrease in terms of its neurotoxic effects remains unknown. Puerarin, an isoflavone extracted from kudzu root, can cross the blood-brain barrier and exert protective effects in nervous system disease. The purpose of the study was to determine the mechanism of Cd-induced mitochondrial mass decrease and the protective role of puerarin in rat cortical neurons. The results indicated that Cd induced mitochondrial mass decrease by activating mitophagy mediated by the PTEN-induced putative kinase protein 1 (PINK1)-E3 ubiquitin ligase (Parkin) and Nip3-like protein X (Nix) pathways in rat cortical neurons. Puerarin improved the Cd-induced decrease in mitochondrial membrane potential (MMP) in vitro, and blocked PINK1-Parkin and Nix-mediated mitophagy, inhibiting Cd-induced mitochondrial mass decrease in rat cortical neurons in vitro and in vivo. In summary, our data clearly indicated that puerarin protects rat cortical neurons against Cd-induced neurotoxicity by ameliorating mitochondrial damage, inhibiting mitophagy-mediated mitochondrial mass decrease. Puerarin appears to have great potential as a neuroprotective agent.
Collapse
Affiliation(s)
- Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Mingchang Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Wenhua Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Sun J, Yu F, Wang T, Bian J, Liu Z, Zou H. The role of DRP1- PINK1-Parkin-mediated mitophagy in early cadmium-induced liver damage. Toxicology 2021; 466:153082. [PMID: 34952138 DOI: 10.1016/j.tox.2021.153082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022]
Abstract
Cadmium (Cd) is an important environmental pollutant that causes varying degrees of damage to multiple systems of the body. However, the specific mechanism of Cd-induced liver mitophagy remains unclear. In the present study, 5-week-old BALB/c mice and a mouse liver parenchyma cell line (AML12) were studied using a combination of in vivo and in vitro studies. We found that Cd damaged liver cells, destroy the structure and function of mitochondria, and increased the production of superoxide anions. This study further examined the effect of Cd on mitochondrial dynamics and mitophagy and showed that Cd increased mitochondrial division and induced mitophagy. The PINK1-Parkin pathway is a classical mitophagy pathway. Cd-induced mitophagy was inhibited after significantly knocking down Pink1. Mdivi-1 can effectively inhibit mitochondrial division. In this study, Mdivi-1 inhibited the expression of DRP1 and significantly inhibited the occurrence of mitophagy induced by Cd. We further examined the effect of Cd on mitophagy flux. Cd did not increase lysosomal colocalization with mitochondria. In summary, Cd increase the level of oxidative stress, destroy the structure and function of mitochondria, destroy the homeostasis of mitochondrial division and fusion, induce mitophagy through the PINK1-Parkin pathway. Mitophagy plays a protective role in early cadmium-induced liver damage.
Collapse
Affiliation(s)
- Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Fan Yu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China.
| |
Collapse
|
24
|
Zou H, Wang L, Zhao J, Yuan Y, Wang T, Bian J, Liu Z. MiR-155 promotes cadmium-induced autophagy in rat hepatocytes by suppressing Rheb expression. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112895. [PMID: 34673407 DOI: 10.1016/j.ecoenv.2021.112895] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/02/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Cadmium is an environmental pollutant that threatens the health of both humans and animals. Current studies have shown that while hepatotoxic damage induced by cadmium is closely related to autophagy, its intrinsic mechanism has not been elucidated. MicroRNA plays a regulatory role on different stages of autophagy. In this study, we investigated the mechanisms by which microRNA-155 (miR-155) regulate cadmium-induced hepatotoxicity in rat hepatocytes (BRL 3A cells) and in vivo. We found that cadmium exposure could cause liver injury in rats, resulting in a decreased liver index, increased alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) activity, hepatocyte steatosis, and ultrastructure damage. Cadmium exposure also induced autophagy in hepatocytes, resulting in increased expression of ATG5, Belin1, LC3II, and an increased number of autophagosomes. In addition, cadmium exposure upregulated miR-155 expression, downregulated Rheb mRNA expression, and downregulated the level of protein expression in the Rheb/mTOR signaling pathway in rat hepatocytes. The overexpression of miR-155 followed by cadmium exposure upregulated the level of autophagy in BRL3A cells, whereas miR-155 inhibition had the opposite effect. In addition, miR-155 negatively regulated Rheb. A dual-luciferase reporter assay verified the negative regulatory effect of miR-155 on Rheb targeting. Knockdown of Rheb downregulated cadmium-induced autophagy. Therefore, the Rheb/mTOR signaling can negatively regulate autophagy. The present study demonstrates that miR-155 promotes cadmium-induced autophagy in rat hepatocytes by suppressing Rheb expression.
Collapse
Affiliation(s)
- Hui Zou
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Ling Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Jianya Zhao
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; College of Public Health, Nantong University, Nantong, Jiangsu 226000, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
25
|
Cao S, Xiao H, Li X, Zhu J, Gao J, Wang L, Hu C. AMPK-PINK1/Parkin Mediated Mitophagy Is Necessary for Alleviating Oxidative Stress-Induced Intestinal Epithelial Barrier Damage and Mitochondrial Energy Metabolism Dysfunction in IPEC-J2. Antioxidants (Basel) 2021; 10:antiox10122010. [PMID: 34943113 PMCID: PMC8698696 DOI: 10.3390/antiox10122010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/25/2022] Open
Abstract
The imbalance of redox biology and oxidative stress leads to intestinal barrier injury and mitophagy. However, much uncertainty still exists about the role of mitophagy in oxidative stress and intestinal function. Here, we showed the effects of hydrogen peroxide (H2O2)-induced oxidative stress on intestinal epithelial cell oxidation balance, intestinal barrier function and mitochondrial energy metabolism and its underlying mechanism. In this study, we found that H2O2-induced oxidative stress activated adenosine monophosphate-activated protein kinase (AMPK) and enhanced mitophagy in intestinal porcine epithelial cells (IPEC-J2). While compound C (AMPK inhibitor) and mdivi-1 (mitophagy inhibitor) significantly reduced the activity of superoxide dismutase (SOD) and increased mitochondrial reactive oxygen species (ROS) levels in H2O2 treated cells. Moreover, compound C and mdivi-1 significantly reduced the trans-epithelium electrical resistant (TER) and increased the fluorescein isothiocyanate-dextran (FD4) flux in H2O2 treated IPEC-J2. Furthermore, compound C and mdivi-1 significantly reduced the activity of mitochondrial complex II. Seahorse XF96 data showed that compound C + mdivi-1+ H2O2 treatment significantly reduced maximum respiratory oxygen consumption and spare respiratory capacity. Additionally, compound C or mdivi-1 treatment reduced the formation of mitochondrial autophagosomes. These results unveiled that AMPK and PINK1/Parkin mediated mitophagy is necessary for alleviating oxidative stress induced intestinal epithelial barrier damage and mitochondrial energy metabolism dysfunction in IPEC-J2.
Collapse
Affiliation(s)
- Shuting Cao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
| | - Xin Li
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
| | - Jiang Zhu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
| | - Jingchun Gao
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
| | - Li Wang
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Key Laboratory of Animal Breeding and Nutrition, Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (S.C.); (H.X.); (J.G.)
- Correspondence: (L.W.); (C.H.)
| | - Caihong Hu
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Animal Science College, Zhejiang University, Hangzhou 310058, China; (X.L.); (J.Z.)
- Correspondence: (L.W.); (C.H.)
| |
Collapse
|
26
|
Cui T, Jiang W, Yang F, Luo J, Hu R, Cao H, Hu G, Zhang C. Molybdenum and cadmium co-induce hypothalamus toxicity in ducks via disturbing Nrf2-mediated defense response and triggering mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113022. [PMID: 34844167 DOI: 10.1016/j.ecoenv.2021.113022] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/17/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Growing evidences reveal that Nrf2-mediated antioxidant defense response and mitophagy are involved in the toxic mechanism of heavy metals, but the effects of molybdenum (Mo) and cadmium (Cd) co-exposure on Nrf2-mediated antioxidant defense response and mitophagy in duck hypothalamus have yet to be elucidated. Herein, 40 healthy 7-day-old ducks were randomly assigned to 4 groups and fed diets containing different doses of Mo or/and Cd for 16 weeks, respectively. The data demonstrated that Mo or/and Cd notably elevated their contents in hypothalamus, decreased Cu, Fe, Zn and Se contents, caused pathological damage and oxidative stress accompanied by elevating MDA content and reducing CAT, T-AOC, T-SOD, GSH-Px activities. Moreover, Mo or/and Cd not only restrained Nrf2 pathway by decreasing Nrf2, HO-1, NQO1, GST, CAT, SOD1, GCLM mRNA expression levels and Nrf2 protein expression level, but also disturbed mitochondrial dynamics and triggered PINK1/Parkin-mediated mitophagy by enhancing MFF, PINK1, Parkin, Bnip3, LC3A, LC3B mRNA expression levels and PINK1, Parkin, LC3B-II/LC3B-I protein expression levels, inhibiting Mfn1, Mfn2, OPA1, P62 mRNA expression levels and P62 protein expression level, and facilitating the colocalization between LC3 and HSP60. The changes of above factors were most remarkable under Mo and Cd co-treatment. Overall, the results elucidate that Mo and Cd can synergistically inhibit Nrf2-mediated antioxidant defense response and activate PINK1/Parkin pathway-dependent mitophagy in duck hypothalamus, whose mechanism is somehow related to Mo and Cd accumulation.
Collapse
Affiliation(s)
- Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjuan Jiang
- Animal Husbandry and Aquatic Products Technology Application Extension Office, Jiangxi Agricultural Technology Extension Center, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Animal Husbandry and Aquatic Products Technology Application Extension Office, Jiangxi Agricultural Technology Extension Center, China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Animal Husbandry and Aquatic Products Technology Application Extension Office, Jiangxi Agricultural Technology Extension Center, China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Animal Husbandry and Aquatic Products Technology Application Extension Office, Jiangxi Agricultural Technology Extension Center, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China; Animal Husbandry and Aquatic Products Technology Application Extension Office, Jiangxi Agricultural Technology Extension Center, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
27
|
Shen H, Sha Y, Huang J, Mao AQ, Zhang T, Wu MY, Sun F, Yu YY, Cheng ZQ, Gong YT. The roles of AMPK-mediated autophagy and mitochondrial autophagy in a mouse model of imiquimod-induced psoriasis. Am J Transl Res 2021; 13:12626-12637. [PMID: 34956478 PMCID: PMC8661142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/23/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Psoriasis is a systemic inflammatory disease characterized by epidermal hyperplasia and skin inflammatory infiltrates. Inactivation of AMPK has been shown to decrease autophagy, thereby inhibiting elimination of inflammatory factors and harmful substances, and aggravating psoriasis. However, the molecular mechanism through which AMPK affects psoriasis remains to be further explored. In this study, we investigated whether AMPK regulates autophagy through the ULK1/Atg7 signaling pathway and regulates mitochondrial autophagy through the PINK1/Parkin signaling pathway, thereby affecting a mouse model of psoriasis. METHODS Imiquimod was used to induce psoriasis-like lesions on the backs of mice. The severity of skin lesions in psoriatic mice was evaluated with the skin inflammation severity score, and epidermal thickness was measured on the basis of H&E staining. RT-PCR, western blotting and immunofluorescence staining were used to detect indicators of autophagy and mitochondrial autophagy. RESULTS AMPK activity was inhibited in the psoriasis mouse model, the autophagy-associated proteins ULK1/Atg7 were inhibited, and the mitochondrial autophagy proteins PINK1/Parkin were also decreased. Results indicated that autophagy and mitochondrial autophagy were inhibited in the mouse model. When AMPK signaling was upregulated, ULK1/Atg7 and PINK1/Parkin were upregulated, autophagy and mitochondrial autophagy increased, and skin lesions in the mouse model were alleviated. ULK1/Atg7 and PINK1/Parkin were down-regulated when AMPK signaling was downregulated, and psoriasis-like skin lesions were aggravated in mice. These results indicated that AMPK regulates autophagy through the ULK1/Atg7 signaling pathway and regulates mitochondrial autophagy through the PINK1/Parkin signaling pathway, thus affecting the prognosis of psoriasis in the mouse model. CONCLUSION AMPK affects the prognosis of psoriasis in a mouse model by regulating autophagy and mitochondrial autophagy.
Collapse
Affiliation(s)
- Hui Shen
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| | - Yan Sha
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| | - Jun Huang
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| | - An-Qi Mao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| | - Tao Zhang
- Department of Acupuncture, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| | - Mu-Yao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| | - Fang Sun
- Department of Dermatology, Aoyang Hospital Affiliated to Jiangsu UniversityZhangjiagang 215600, Jiangsu, China
| | - Ying-Yuan Yu
- Department of Dermatology, Nanjing Medical UniversityNanjing 210029, Jiangsu, China
| | - Zhong-Qin Cheng
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| | - Ya-Ting Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese MedicineZhangjiagang 215600, Jiangsu, China
| |
Collapse
|
28
|
Ahuja P, Ng CF, Pang BPS, Chan WS, Tse MCL, Bi X, Kwan HLR, Brobst D, Herlea-Pana O, Yang X, Du G, Saengnipanthkul S, Noh HL, Jiao B, Kim JK, Lee CW, Ye K, Chan CB. Muscle-generated BDNF (brain derived neurotrophic factor) maintains mitochondrial quality control in female mice. Autophagy 2021; 18:1367-1384. [PMID: 34689722 DOI: 10.1080/15548627.2021.1985257] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial remodeling is dysregulated in metabolic diseases but the underlying mechanism is not fully understood. We report here that BDNF (brain derived neurotrophic factor) provokes mitochondrial fission and clearance in skeletal muscle via the PRKAA/AMPK-PINK1-PRKN/Parkin and PRKAA-DNM1L/DRP1-MFF pathways. Depleting Bdnf expression in myotubes reduced fatty acid-induced mitofission and mitophagy, which was associated with mitochondrial elongation and impaired lipid handling. Muscle-specific bdnf knockout (MBKO) mice displayed defective mitofission and mitophagy, and accumulation of dysfunctional mitochondria in the muscle when they were fed with a high-fat diet (HFD). These animals also have exacerbated body weight gain, increased intramyocellular lipid deposition, reduced energy expenditure, poor metabolic flexibility, and more insulin resistance. In contrast, consuming a BDNF mimetic (7,8-dihydroxyflavone) increased mitochondrial content, and enhanced mitofission and mitophagy in the skeletal muscles. Hence, BDNF is an essential myokine to maintain mitochondrial quality and function, and its repression in obesity might contribute to impaired metabolism.Abbreviation: 7,8-DHF: 7,8-dihydroxyflavone; ACACA/ACC: acetyl Coenzyme A carboxylase alpha; ACAD: acyl-Coenzyme A dehydrogenase family; ACADVL: acyl-Coenzyme A dehydrogenase, very long chain; ACOT: acyl-CoA thioesterase; CAMKK2: calcium/calmodulin-dependent protein kinase kinase 2, beta; BDNF: brain derived neurotrophic factor; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; CCL2/MCP-1: chemokine (C-C motif) ligand 2; CCL5: chemokine (C-C motif) ligand 5; CNS: central nervous system; CPT1B: carnitine palmitoyltransferase 1b, muscle; Cpt2: carnitine palmitoyltransferase 2; CREB: cAMP responsive element binding protein; DNM1L/DRP1: dynamin 1-like; E2: estrogen; EHHADH: enoyl-CoenzymeA hydratase/3-hydroxyacyl CoenzymeA dehydrogenase; ESR1/ER-alpha: estrogen receptor 1 (alpha); FA: fatty acid; FAO: fatty acid oxidation; FCCP: carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone; FFA: free fatty acids; FGF21: fibroblast growth factor 21; FUNDC1: FUN14 domain containing 1; HADHA: hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha; HFD: high-fat diet; iWAT: inguinal white adipose tissues; MAP1LC3A/LC3A: microtubule-associated protein 1 light chain 3 alpha; MBKO; muscle-specific bdnf knockout; IL6/IL-6: interleukin 6; MCEE: methylmalonyl CoA epimerase; MFF: mitochondrial fission factor; NTRK2/TRKB: neurotrophic tyrosine kinase, receptor, type 2; OPTN: optineurin; PA: palmitic acid; PARL: presenilin associated, rhomboid-like; PDH: pyruvate dehydrogenase; PINK1: PTEN induced putative kinase 1; PPARGC1A/PGC-1α: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PRKAA/AMPK: protein kinase, AMP-activated, alpha 2 catalytic subunit; ROS: reactive oxygen species; TBK1: TANK-binding kinase 1; TG: triacylglycerides; TNF/TNFα: tumor necrosis factor; TOMM20: translocase of outer mitochondrial membrane 20; ULK1: unc-51 like kinase 1.
Collapse
Affiliation(s)
- Palak Ahuja
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Chun Fai Ng
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Brian Pak Shing Pang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Wing Suen Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Margaret Chui Ling Tse
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Xinyi Bi
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong
| | - Hiu-Lam Rachel Kwan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Daniel Brobst
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Oana Herlea-Pana
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, Beijing, China
| | - Suchaorn Saengnipanthkul
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Hye Lim Noh
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Baowei Jiao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.,Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Chi Wai Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, China, Hong Kong
| | - Keqiang Ye
- Department of Pathology, Emory University School of Medicine, Atlanta, USA
| | - Chi Bun Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China, Hong Kong.,State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong
| |
Collapse
|
29
|
Ca 2+ transfer via the ER-mitochondria tethering complex in neuronal cells contribute to cadmium-induced autophagy. Cell Biol Toxicol 2021; 38:469-485. [PMID: 34308505 DOI: 10.1007/s10565-021-09623-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/10/2021] [Indexed: 10/20/2022]
Abstract
Mitochondrial-associated endoplasmic reticulum (ER) membranes (MAMs) play a key role in several physiological functions, including calcium ion (Ca2+) transfer and autophagy; however, the molecular mechanism controlling this interaction in cadmium (Cd)-induced neurotoxicity is unknown. This study shows that Cd induces alterations in MAMs and mitochondrial Ca2+ levels in PC12 cells and primary neurons. Ablation or silencing of mitofusin 2 (Mfn2) in PC12 cells or primary neurons blocks the colocalization of ER and mitochondria while reducing the efficiency of mitochondrial Ca2+ uptake. Moreover, Mfn2 defects reduce interactions or colocalization between GRP75 and VDAC1. Interestingly, the enhancement of autophagic protein levels, colocalization of LC3 and Lamp2, and GFP-LC3 puncta induced by Cd decreased in Mfn2-/- or Grp75-/- PC12 cells and Mfn2- or Grp75-silenced primary neurons. Notably, the specific Ca2+ uniporter inhibitor RuR blocked both mitochondrial Ca2+ uptake and autophagy induced by Cd. Finally, this study proves that the mechanism by which IP3R-Grp75-VDAC1 tethers in MAMs is associated with the regulation of autophagy by Mfn2 and involves their role in mediating mitochondrial Ca2+ uptake from ER stores. These results give new evidence into the organelle metabolic process by demonstrating that Ca2+ transport between ER-mitochondria is important in autophagosome formation in Cd-induced neurodegeneration.
Collapse
|
30
|
RIPK3 Induces Cardiomyocyte Necroptosis via Inhibition of AMPK-Parkin-Mitophagy in Cardiac Remodelling after Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6635955. [PMID: 33854696 PMCID: PMC8019651 DOI: 10.1155/2021/6635955] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/15/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Receptor-interacting protein 3- (RIPK3-) modulated necroptosis plays a critical role in cardiac remodelling after myocardial infarction (MI). However, the precise regulatory mechanism is not fully elucidated yet. In the present study, we showed that RIPK3 expression was upregulated in myocardial tissue after MI in a mouse model by coronary artery ligation, as well as in the cardiomyocytes following hypoxic injury in vitro. The increase of RIPK3 expression was found to be accompanied by severe cardiac remodelling, cardiac dysfunction, and higher mortality. Elevated RIPK3 expression subsequently abrogated the AMPK pathway that was accompanied by inhibition of Parkin-mediated mitophagy. Loss of mitophagy increased the opening of mitochondrial permeability transition pore (mPTP), which ultimately induced the cardiomyocyte necroptosis. In contrast, genetic ablation of Ripk3 induced the AMPK/Parkin-mitophagy pathway, favouring a prosurvival state that eventually inhibited mPTP opening and induced the necroptosis of cardiomyocytes in the post-MI cardiac remodelling. In conclusion, our results revealed a key mechanism by which necroptosis could be mediated by RIPK3 via the AMPK/Parkin-mitophagy/mPTP opening axis, which provides a potential therapeutic target in the management of heart failure after MI.
Collapse
|
31
|
Cai J, Guan H, Jiao X, Yang J, Chen X, Zhang H, Zheng Y, Zhu Y, Liu Q, Zhang Z. NLRP3 inflammasome mediated pyroptosis is involved in cadmium exposure-induced neuroinflammation through the IL-1β/IkB-α-NF-κB-NLRP3 feedback loop in swine. Toxicology 2021; 453:152720. [PMID: 33592257 DOI: 10.1016/j.tox.2021.152720] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd) chloride, as widely distributed toxic environmental pollutants by using in industry, severely imperils animal and human health. Pyroptosis is a Cas1-dependent pro-inflammatory programmed cell death and involves in various types of diseases. Nevertheless, the mechanism of pyroptosis and Cd-induced neurotoxicity remains obscure. To investigate the specific molecular mechanisms of Cd-induced neurotoxicity, 10 weaned piglets were randomly divided into 2 groups treated with 0 and 20 mg/kg CdCl2 in the diet for 40 days. The levels of pyroptosis, mitochondrial and inflammation-related genes were validated by qRT-PCR and WB in vivo. Our results revealed that Cd caused cerebral histopathology lesions, inducing cerebral pyroptosis and the mass generation of inflammatory cytokines, as indicated by the increased NLRP3 inflammasome activation (NLRP3, Cas1 and ASC) and the upregulation of inflammation factors IL-2, IL-6, IL-7 and inhibition of IL-10. Subsequently, further research indicated that Cd triggered pyroptosis via activating the TRAF6-IkB-α-NF-κB pathway, which interfered with the phosphorylation and ubiquitination of IkB-α. Furthermore, Cd caused mitochondrial dysfunction and fragmentation by inhibiting the AMPK-PGC-1α-NRF1/2 signaling pathway and reduced the expression of mitochondrial-related regulatory factors OPA1, TFAM and mtDNA, resulting in the increase of NLRP3 inflammasome. Besides, we found eight hub genes (IKK, IKB-α, NLRP3, TRAF6, NF-κB, AMPK, TNFα and PGC-1α), mainly related to the interaction between the NF-κB pathway and NLRP3 inflammasome. Overall, these results demonstrated that Cd could promote the IL-1β/IkB-α-NF-κB-NLRP3 inflammasome activation positive feedback loop to result in neuroinflammation in swine, which provided new insights in understanding Cd-induced toxicity.
Collapse
Affiliation(s)
- Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoyue Guan
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, PR China
| | - Xing Jiao
- China Institute of Water Resources and Hydropower Research, Beijing 100048, PR China
| | - Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Haoran Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yingying Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, PR China.
| |
Collapse
|
32
|
Zhang Y, Huang N, Xu J, Zheng W, Cui X. Homoharringtonine Exerts an Antimyeloma Effect by Promoting Excess Parkin-Dependent Mitophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4749-4763. [PMID: 33177810 PMCID: PMC7652225 DOI: 10.2147/dddt.s279054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022]
Abstract
Purpose Homoharringtonine (HHT) has been used as an antileukemia agent in the clinic which processes a high-potential therapeutic efficacy against multiple myeloma (MM). In this study, we investigated the antimyeloma mechanism of HHT. Methods Three MM cell lines and a xenograft model were applied. Mitochondrial function was evaluated by detecting MitoTracker Green, the mtDNA copy number, mitochondrial protein and enzyme activity, the mitochondrial membrane potential and mitochondrial morphology. Mitophagy levels were assessed by monitoring autophagosomes, performing a colocalization analysis and determining the levels of related proteins. An shRNA was applied to knockdown Parkin. Results Based on the results of the in vitro experiments, HHT exerted a promising antiproliferative effect on the MM.1S, RPMI 8226 and H929 cell lines by increasing mitophagy. In addition, HHT markedly inhibited myeloma tumor growth and prolonged survival by promoting mitophagy in vivo. Furthermore, HHT treatment contributed to notable mitochondrial dysfunction and Parkin-dependent mitophagy, as evidenced by the destruction of mitochondria, the decrease in the mtDNA copy number, decrease in the Bcl-2/Bax ratio, and decrease in the levels of mitochondrial proteins and the optimal expression of Parkin and NDP52. However, the addition of rapamycin did not produce significant synergistic effect with HHT, indicating that HHT reached the threshold level to induce mitophagy. The colocalization analysis and assessment of mitochondrial function examination further confirmed that HHT triggered mitophagy and mitochondrial dysfunction. Moreover, the antiproliferative effect of HHT was reversed by an shRNA targeting Parkin, highlighting the indispensable role of Parkin-dependent mitophagy in the antimyeloma effect of HHT. Conclusion HHT exerts an antimyeloma effect by inducing excess mitophagy, providing new mechanistic insights into a therapeutic strategy for MM.
Collapse
Affiliation(s)
- Yanyu Zhang
- Department of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Ning Huang
- Clinical Laboratory Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Jie Xu
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Wei Zheng
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xing Cui
- Department of Hematology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| |
Collapse
|
33
|
Wang T, Zhu Q, Cao B, Yuan Y, Wen S, Liu Z. Cadmium induces mitophagy via AMP-activated protein kinases activation in a PINK1/Parkin-dependent manner in PC12 cells. Cell Prolif 2020; 53:e12817. [PMID: 32396704 PMCID: PMC7309594 DOI: 10.1111/cpr.12817] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives Cadmium (Cd) induces mitophagy in neuronal cells, but the underlying mechanisms remain unknown. In this study, we aimed to investigate these mechanisms. Materials and methods The effects of Cd on the mitophagy in rat pheochromocytoma PC12 cells were detected, and the role of PINK1/Parkin pathway in Cd‐induced mitophagy was also analysed by using PINK1 siRNA. In order to explore the relationship between AMPK and PINK1/Parkin in Cd‐induced mitophagy in PC12 cells, the CRISPR‐Cas9 system was used to knock down AMPK expression. Results The results showed that Cd treatment triggered a significant increase in mitophagosome formation and the colocalization of mitochondria and lysosomes, which was further proved by the colocalization of LC3 puncta and its receptors NDP52 or P62 with mitochondria in PC12 cells. Moreover, an accumulation of PINK1 and Parkin was found in mitochondria. Additionally, upon PINK1 knock‐down using PINK1 siRNA, Cd‐induced mitophagy was efficiently suppressed. Interestingly, chemical or genetic reversal of AMPK activation: (a) significantly inhibited the activation of mitophagy and (b) promoted NLRP3 activation by inhibiting PINK/Parkin translocation. Conclusions These results suggest that Cd induces mitophagy via the PINK/Parkin pathway following AMPK activation in PC12 cells. Targeting the balanced activity of AMPK/PINK1/Parkin‐mediated mitophagy signalling may be a potential therapeutic approach to treat Cd‐induced neurotoxicity.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Qiaoping Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Binbin Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Shuangquan Wen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou, Jiangsu, China
| |
Collapse
|