1
|
Czerwonka A, Kałafut J, Nees M. Modulation of Notch Signaling by Small-Molecular Compounds and Its Potential in Anticancer Studies. Cancers (Basel) 2023; 15:4563. [PMID: 37760535 PMCID: PMC10526229 DOI: 10.3390/cancers15184563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Notch signaling is responsible for conveying messages between cells through direct contact, playing a pivotal role in tissue development and homeostasis. The modulation of Notch-related processes, such as cell growth, differentiation, viability, and cell fate, offer opportunities to better understand and prevent disease progression, including cancer. Currently, research efforts are mainly focused on attempts to inhibit Notch signaling in tumors with strong oncogenic, gain-of-function (GoF) or hyperactivation of Notch signaling. The goal is to reduce the growth and proliferation of cancer cells, interfere with neo-angiogenesis, increase chemosensitivity, potentially target cancer stem cells, tumor dormancy, and invasion, and induce apoptosis. Attempts to pharmacologically enhance or restore disturbed Notch signaling for anticancer therapies are less frequent. However, in some cancer types, such as squamous cell carcinomas, preferentially, loss-of-function (LoF) mutations have been confirmed, and restoring but not blocking Notch functions may be beneficial for therapy. The modulation of Notch signaling can be performed at several key levels related to NOTCH receptor expression, translation, posttranslational (proteolytic) processing, glycosylation, transport, and activation. This further includes blocking the interaction with Notch-related nuclear DNA transcription. Examples of small-molecular chemical compounds, that modulate individual elements of Notch signaling at the mentioned levels, have been described in the recent literature.
Collapse
Affiliation(s)
- Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.K.); (M.N.)
| | | | | |
Collapse
|
2
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
3
|
Ahmadi H, Moradi H, Pastras CJ, Abolpour Moshizi S, Wu S, Asadnia M. Development of Ultrasensitive Biomimetic Auditory Hair Cells Based on Piezoresistive Hydrogel Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44904-44915. [PMID: 34516096 DOI: 10.1021/acsami.1c12515] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With an ageing population, hearing disorders are predicted to rise considerably in the following decades. Thus, developing a new class of artificial auditory system has been highlighted as one of the most exciting research topics for biomedical applications. Herein, a design of a biocompatible piezoresistive-based artificial hair cell sensor is presented consisting of a highly flexible and conductive polyvinyl alcohol (PVA) nanocomposite with vertical graphene nanosheets (VGNs). The bilayer hydrogel sensor demonstrates excellent performance to mimic biological hair cells, responding to acoustic stimuli in the audible range between 60 Hz to 20 kHz. The sensor output demonstrates stable mid-frequency regions (∼4-9 kHz), with the greatest sensitivity as high frequencies (∼13-20 kHz). This is somewhat akin to the mammalian auditory system, which has remarkable sensitivity and sharp tuning at high frequencies due to the "active process". This work validates the PVA/VGN sensor as a potential candidate to play a similar functional role to that of the cochlear hair cells, which also operate over a wide frequency domain in a viscous environment. Further characterizations of the sensor show that increasing the sound amplitude results in higher responses from the sensor while taking it to the depth drops the sensor outputs due to attenuation of sound in water. Meanwhile, the acoustic pressure distribution of sound waves is predicted through finite element analysis, whereby the numerical results are in perfect agreement with experimental data. This proof-of-concept work creates a platform for the future design of susceptible, flexible biomimetic sensors to closely mimic the biological cochlea.
Collapse
Affiliation(s)
- Hadi Ahmadi
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Hamed Moradi
- School of Mechanical Engineering, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Christopher J Pastras
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales 2050, Australia
| | | | - Shuying Wu
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
4
|
Wu J, Dong X, Li W, Zhao L, Zhou L, Sun S, Li H. Dibenzazepine promotes cochlear supporting cell proliferation and hair cell regeneration in neonatal mice. Cell Prolif 2020; 53:e12872. [PMID: 32677724 PMCID: PMC7507434 DOI: 10.1111/cpr.12872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives To investigate the role of dibenzazepine (DBZ) in promoting supporting cell (SC) proliferation and hair cell (HC) regeneration in the inner ear. Materials and Methods Postnatal day 1 wild‐type or neomycin‐damaged mouse cochleae were cultured with DBZ. Immunohistochemistry and scanning electron microscopy were used to examine the morphology of cochlear cells, and high‐throughput RNA‐sequencing was used to measure gene expression levels. Results We found that DBZ promoted SC proliferation and HC regeneration in a dose‐dependent manner in both normal and damaged cochleae. In addition, most of the newly regenerated HCs induced by DBZ had visible and relatively mature stereocilia bundle structures. Finally, RNA sequencing detected the differentially expressed genes between DBZ treatment and controls, and interaction networks were constructed for the most highly differentially expressed genes. Conclusions Our study demonstrates that DBZ can significantly promote SC proliferation and increase the number of mitotically regenerated HCs with relatively mature stereocilia bundles in the neonatal mouse cochlea by inhibiting Notch signalling and activating Wnt signalling, suggesting the DBZ might be a new therapeutic target for stimulating HC regeneration.
Collapse
Affiliation(s)
- Jingfang Wu
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Xinran Dong
- Molecular Medical Center, Children's Hospital of Fudan University, Shanghai, China
| | - Wen Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Liping Zhao
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Li Zhou
- Shanghai High School, Shanghai, China
| | - Shan Sun
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China
| | - Huawei Li
- Otorhinolaryngology Department of Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Hearing Medicine, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Biomedical Sciences, Fudan University School of Basic Medical Sciences, Shanghai, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|