1
|
Chen R, Tong Y, Hu X, Wang W, Liao F. circSLTM knockdown attenuates chondrocyte inflammation, apoptosis and ECM degradation in osteoarthritis by regulating the miR-515-5p/VAPB axis. Int Immunopharmacol 2024; 138:112435. [PMID: 38981227 DOI: 10.1016/j.intimp.2024.112435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration. Circular RNAs (circRNAs) have emerged as pivotal players in OA progression, orchestrating various biological processes such as proliferation, apoptosis, inflammation, and extracellular matrix (ECM) reorganization. Among these circRNAs, circSLTM exhibits aberrant expression in OA, yet its precise regulatory mechanism remains elusive. This study aimed to elucidate the regulatory mechanisms of circSLTM in OA pathogenesis, with a focus on its role as a competing endogenous RNA (ceRNA). Human cartilage tissues were procured from both OA patients and non-OA individuals, while human chondrocyte cells were subjected to lipopolysaccharide (LPS) treatment to mimic OA-like conditions. Our findings revealed upregulation of circSLTM in OA patients and LPS-treated chondrocytes. Loss-of-function assays were conducted, demonstrating that silencing circSLTM via shRNAs mitigated LPS-induced effects on chondrocytes, as evidenced by enhanced proliferation, reduced apoptosis, and inflammatory factors, and altered expression of extracellular matrix proteins. Further exploration into the regulatory mechanism of circSLTM unveiled its interaction with microRNA-515-5p (miR-515-5p) to modulate vesicle-associated membrane protein (VAPB) expression in chondrocytes. VAPB, also upregulated in OA, was positively regulated by circSLTM. Rescue assays corroborated that VAPB overexpression reinstated the protective effects of circSLTM knockdown on LPS-treated chondrocytes. Moreover, concurrent knockdown of both circSLTM and VAPB demonstrated synergistic protection against LPS-induced chondrocyte injury. Additionally, we delineated that LPS triggered the activation of the NF-κB pathway in chondrocytes, which was counteracted by circSLTM silencing. To assess the effects of circSLTM on OA in vivo, anterior cruciate ligament transection (ACLT) mouse models were established, revealing that circSLTM deficiency ameliorated cartilage defects in vivo. In conclusion, circSLTM exacerbates osteoarthritis progression by orchestrating the miR-515-5p/VAPB axis and activating the NF-κB pathway, providing novel insights for targeted therapy in OA management.
Collapse
Affiliation(s)
- Rijiang Chen
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Yan Tong
- Department of Endocrine, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Xiunian Hu
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Wantao Wang
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| | - Fake Liao
- Department of Orthopedics, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, Fujian 364000, China.
| |
Collapse
|
2
|
Zhang Z, Yu P, Bai L. Hsa_circular RNA_0045474 Facilitates Osteoarthritis Via Modulating microRNA-485-3p and Augmenting Transcription Factor 4. Mol Biotechnol 2024; 66:1174-1187. [PMID: 38206529 DOI: 10.1007/s12033-023-01019-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Circular RNA (circRNA) influences on the pathological process of osteoarthritis (OA) and may be a potential marker for disease diagnosis. The study was to scrutinize the association of circ_0045474 with OA. Clinical samples of OA patients were collected, and 12 circRNAs derived from KPNA2 gene were examined. CHON-001 cells were stimulated with IL-1β to construct an OA chondrocyte model. miR-485-3p, transcription factor 4 (TCF4) and circ_0045474, type II procollagen (COL2A1), and human collagenase-3 (MMP13) were tested. Furthermore, cell activities were analyzed. The relationship between miR-485-3p, TCF4, and circ_0045474 was determined. The role of circ_0045474 in vivo was further confirmed by constructing an OA mouse model by anterior cruciate ligament transection. circ_0045474 expression was elevated in OA patients. Suppressing circ_0045474 restrained IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis. Circ_0045474 competitively combined with miR-485-3p, while TCF4 was the target of miR-485-3p. Circ_0045474 modulated IL-1β-stimulated extracellular matrix degradation, inflammatory cytokine secretion, and chondrocyte apoptosis via miR-485-3p/TCF4 axis. Suppressing circ 0045474 was effective to alleviate OA in mice. Silenced circ_0045474 suppresses OA progression in vitro and vivo via miR-485-3p/TCF4 axis. In short, circ_0045474 can be considered a novel therapeutic target for OA.
Collapse
Affiliation(s)
- ZhenXing Zhang
- Department of Orthopaedics II, Haining People's Hospital, Haining, 314400, Zhejiang, China
| | - PingHua Yu
- Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - LinGang Bai
- Trauma Center, The Second People's Hospital of Lianyungang, No.41, Hailian East Road, Xinpu District, Lianyungang, 222002, Jiangsu, China.
| |
Collapse
|
3
|
Liu Y, Zhang G, Wu J, Meng Y, Hu J, Fu H, Yang D. CARMA3 Drives NF-κB Activation and Promotes Intervertebral Disc Degeneration: Involvement of CARMA3-BCL10-MALT1 Signalosome. Inflammation 2024:10.1007/s10753-024-02016-3. [PMID: 38607566 DOI: 10.1007/s10753-024-02016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
Intervertebral disc degeneration (IDD) diseases are common and frequent diseases in orthopedics. The caspase recruitment domain (CARD) and membrane-associated guanylate kinase-like protein 3 (CARMA3) is crucial in the activation of the NF-κB pathway. However, the biological function of CARMA3 in IDD remains unknown. Here, CARMA3 expression was elevated in nucleus pulposus (NP) tissues of IDD rats and nutrient deprivation (ND)-induced NP cells. The main pathological manifestations observed in IDD rats were shrinkage of the NP, reduction of NP cells, fibrosis of NP tissues, and massive reduction of proteoglycans. These changes were accompanied by a decrease in the expression of collagen II and aggrecan, an increase in the expression of the extracellular matrix (ECM) catabolic proteases MMP-3, MMP-13, and metalloprotease with ADAMTS-5, and an increase in the activity of the pro-apoptotic protease caspase-3. The expression of p-IκBαSer32/36 and p-p65Ser536 was also upregulated. However, these effects were reversed with the knockdown of CARMA3. Mechanistically, CARMA3 bound to BCL10 and MALT1 to form a signalosome. Knockdown of CARMA3 reduced the CARMA3-BCL10-MALT1 signalosome-mediated NF-κB activation. CARMA3 activated the NF-κB signaling pathway in a manner that bound to BCL10 and MALT1 to form a signalosome, which affects NP cell damage and is involved in the development of IDD. This supports CARMA3-BCL10-MALT1-NF-κB as a promising targeting axis for the treatment of IDD.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Guiqi Zhang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Jiani Wu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Yi Meng
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Jianyu Hu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Hao Fu
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China
| | - Dongfang Yang
- Department of Orthopedics, Central Hospital of Dalian University of Technology, No. 826 Xinan Road, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Singh N, Bhattacharjee A, Kumar P, Katti DS. Targeting multiple disease hallmarks using a synergistic disease-modifying drug combination ameliorates osteoarthritis via inhibition of senescence and inflammation. Life Sci 2023; 334:122212. [PMID: 37890697 DOI: 10.1016/j.lfs.2023.122212] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
AIMS Osteoarthritis (OA), is a debilitating disease characterized by progressive cartilage degradation, synovial inflammation, and chondrocyte senescence. Various treatment agents independently targeting these hallmarks have been investigated. However, due to the complex multifaceted nature of OA, no disease-modifying osteoarthritis drugs are clinically available. In an attempt to overcome this, we developed a combinatorial approach and demonstrated the efficacy of TsC [Tissue inhibitor of metalloproteinase-3 (TIMP3) + sulfated carboxymethylcellulose (sCMC)] and piperlongumine (PL) combination for the amelioration of OA in a goat ex vivo OA model. MAIN METHODS The efficacy of the drug combination was evaluated using the goat ex vivo OA explant model and results were validated in clinically relevant human OA cartilage explants. The chondroprotective effects were evaluated in terms of reduced inflammation and cartilage matrix loss, reduction in chondrosenescence, and reduced oxidative stress. KEY FINDINGS A combination of TsC and PL (TsC-PL) significantly reduced inflammation, cartilage matrix loss, chondrosenescence, and oxidative stress in the goat ex vivo OA model and showed chondroprotective effects. Further, similar chondroprotective effects were observed in human OA cartilage. Additionally, the coefficient of drug interaction analysis indicated that the combination of TsC and PL had a synergistic effect in reducing matrix degrading proteases and inflammation (goat ex vivo OA model) and Reactive oxygen species (ROS) production (human OA cartilage). SIGNIFICANCE Combinatorial treatment with TsC and PL demonstrated potential disease-modifying effects for the treatment of osteoarthritis via inhibition of inflammation and senescence and supports the usage of treatment strategies targeting multiple pathological factors of OA simultaneously.
Collapse
Affiliation(s)
- Nihal Singh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Arijit Bhattacharjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Praganesh Kumar
- Ganesh Shankar Vidyarthi Memorial Medical College, Kanpur 208002, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India; The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
5
|
Atasoy-Zeybek A, Hawse GP, Nagelli CV, Lopez De Padilla C, Abdel MP, Evans CH. Transcriptomic changes during the replicative senescence of human articular chondrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565835. [PMID: 37986862 PMCID: PMC10659330 DOI: 10.1101/2023.11.07.565835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease and a leading cause of disability worldwide. Aging is a major risk factor for OA, but the specific mechanisms underlying this connection remain unclear. Although chondrocytes rarely divide in adult articular cartilage, they undergo replicative senescence in vitro which provides an opportunity to study changes related to aging under controlled laboratory conditions. In this pilot study, we performed bulk RNA sequencing on early- and late-passage human articular chondrocytes to identify transcriptomic changes associated with cellular aging. Chondrocytes were isolated from the articular cartilage of three donors, two with OA (age 70-80 years) and one with healthy cartilage (age 26 years). Chondrocytes were serially passaged until replicative senescence and RNA extracted from early- and late-passage cells. Principal component analysis of all genes showed clear separation between early- and late-passage chondrocytes, indicating substantial age-related differences in gene expression. Differentially expressed genes (DEGs) analysis confirmed distinct transcriptomic profiles between early- and late-passage chondrocytes. Hierarchical clustering revealed contrasting expression patterns between the two isolates from osteoarthritic samples and the healthy sample. Focused analysis of DEGs on transcripts associated with turnover of the extra-cellular matrix and the senescence-associated secretory phenotype (SASP) showed consistent downregulation of Col2A1 and ACAN, and upregulation of MMP19, ADAMTS4, and ADAMTS8 in late passage chondrocytes across all samples. SASP components including IL-1α, IL-1β, IL-6, IL-7, p16INK4A (CDKN2A) and CCL2 demonstrated significant upregulation in late passage chondrocytes originally isolated from OA samples. Pathway analysis between sexes with OA revealed shared pathways such as extracellular matrix (ECM) organization, collagen formation, skeletal and muscle development, and nervous system development. Sex-specific differences were observed, with males showing distinctions in ECM organization, regulation of the cell cycle process as well as neuron differentiation. In contrast, females exhibited unique variations in the regulation of the cell cycle process, DNA metabolic process, and the PID-PLK1 pathway.
Collapse
Affiliation(s)
- Aysegul Atasoy-Zeybek
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Gresin P. Hawse
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Christopher V. Nagelli
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Consuelo Lopez De Padilla
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher H. Evans
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
6
|
Swahn H, Olmer M, Lotz MK. RNA-binding proteins that are highly expressed and enriched in healthy cartilage but suppressed in osteoarthritis. Front Cell Dev Biol 2023; 11:1208315. [PMID: 37457300 PMCID: PMC10349536 DOI: 10.3389/fcell.2023.1208315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Objectives: RNA-binding proteins (RBPs) have diverse and essential biological functions, but their role in cartilage health and disease is largely unknown. The objectives of this study were (i) map the global landscape of RBPs expressed and enriched in healthy cartilage and dysregulated in osteoarthritis (OA); (ii) prioritize RBPs for their potential role in cartilage and in OA pathogenesis and as therapeutic targets. Methods: Our published bulk RNA-sequencing (RNA-seq) data of healthy and OA human cartilage, and a census of 1,542 RBPs were utilized to identify RBPs that are expressed in healthy cartilage and differentially expressed (DE) in OA. Next, our comparison of healthy cartilage RNA-seq data to 37 transcriptomes in the Genotype-Tissue Expression (GTEx) database was used to determine RBPs that are enriched in cartilage. Finally, expression of RBPs was analyzed in our single cell RNA-sequencing (scRNA-seq) data from healthy and OA human cartilage. Results: Expression of RBPs was higher than nonRBPs in healthy cartilage. In OA cartilage, 188 RBPs were differentially expressed, with a greater proportion downregulated. Ribosome biogenesis was enriched in the upregulated RBPs, while splicing and transport were enriched in the downregulated. To further prioritize RBPs, we selected the top 10% expressed RBPs in healthy cartilage and those that were cartilage-enriched according to GTEx. Intersecting these criteria, we identified Tetrachlorodibenzodioxin (TCDD) Inducible Poly (ADP-Ribose) Polymerase (TIPARP) as a candidate RBP. TIPARP was downregulated in OA. scRNA-seq data revealed TIPARP was most significantly downregulated in the "pathogenic cluster". Conclusion: Our global analyses reveal expression patterns of RBPs in healthy and OA cartilage. We also identified TIPARP and other RBPs as novel mediators in OA pathogenesis and as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Martin K. Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, United States
| |
Collapse
|
7
|
Li Z, Lu J. CircRNAs in osteoarthritis: research status and prospect. Front Genet 2023; 14:1173812. [PMID: 37229197 PMCID: PMC10203419 DOI: 10.3389/fgene.2023.1173812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Osteoarthritis (OA) is the most common joint disease globally, and its progression is irreversible. The mechanism of osteoarthritis is not fully understood. Research on the molecular biological mechanism of OA is deepening, among which epigenetics, especially noncoding RNA, is an emerging hotspot. CircRNA is a unique circular noncoding RNA not degraded by RNase R, so it is a possible clinical target and biomarker. Many studies have found that circRNAs play an essential role in the progression of OA, including extracellular matrix metabolism, autophagy, apoptosis, the proliferation of chondrocytes, inflammation, oxidative stress, cartilage development, and chondrogenic differentiation. Differential expression of circRNAs was also observed in the synovium and subchondral bone in the OA joint. In terms of mechanism, existing studies have mainly found that circRNA adsorbs miRNA through the ceRNA mechanism, and a few studies have found that circRNA can serve as a scaffold for protein reactions. In terms of clinical transformation, circRNAs are considered promising biomarkers, but no large cohort has tested their diagnostic value. Meanwhile, some studies have used circRNAs loaded in extracellular vesicles for OA precision medicine. However, there are still many problems to be solved in the research, such as the role of circRNA in different OA stages or OA subtypes, the construction of animal models of circRNA knockout, and more research on the mechanism of circRNA. In general, circRNAs have a regulatory role in OA and have particular clinical potential, but further studies are needed in the future.
Collapse
Affiliation(s)
- Zhuang Li
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Bagheri Varzaneh M, Zhao Y, Rozynek J, Han M, Reed DA. Disrupting mechanical homeostasis promotes matrix metalloproteinase-13 mediated processing of neuron glial antigen 2 in mandibular condylar cartilage. Eur Cell Mater 2023; 45:113-130. [PMID: 37154195 PMCID: PMC10405277 DOI: 10.22203/ecm.v045a08] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Post-traumatic osteoarthritis in the temporomandibular joint (TMJ OA) is associated dysfunctional cellmatrix mediated signalling resulting from changes in the pericellular microenvironment after injury. Matrix metalloproteinase (MMP)-13 is a critical enzyme in biomineralisation and the progression of OA that can both degrade the extracellular matrix and modify extracellular receptors. This study focused on MMP-13 mediated changes in a transmembrane proteoglycan, Neuron Glial antigen 2 (NG2/CSPG4). NG2/CSPG4 is a receptor for type VI collagen and a known substrate for MMP-13. In healthy articular layer chondrocytes, NG2/CSPG4 is membrane bound but becomes internalised during TMJ OA. The objective of this study was to determine if MMP-13 contributed to the cleavage and internalisation of NG2/CSPG4 during mechanical loading and OA progression. Using preclinical and clinical samples, it was shown that MMP-13 was present in a spatiotemporally consistent pattern with NG2/CSPG4 internalisation during TMJ OA. In vitro, it was illustrated that inhibiting MMP-13 prevented retention of the NG2/CSPG4 ectodomain in the extracellular matrix. Inhibiting MMP-13 promoted the accumulation of membrane-associated NG2/CSPG4 but did not affect the formation of mechanical-loading dependent variant specific fragments of the ectodomain. MMP- 13 mediated cleavage of NG2/CSPG4 is necessary to initiate clathrin-mediated internalisation of the NG2/ CSPG4 intracellular domain following mechanical loading. This mechanically sensitive MMP-13-NG2/CSPG4 axis affected the expression of key mineralisation and OA genes including bone morphogenetic protein 2, and parathyroid hormone-related protein. Together, these findings implicated MMP-13 mediated cleavage of NG2/CSPG4 in the mechanical homeostasis of mandibular condylar cartilage during the progression of degenerative arthropathies such as OA.
Collapse
Affiliation(s)
| | | | | | | | - D A Reed
- 801 South Paulina Street, Room 431, Chicago, IL 60612,
| |
Collapse
|
9
|
Xue Q, Huang Y, Chang J, Cheng C, Wang Y, Wang X, Miao C. CircRNA-mediated ceRNA mechanism in Osteoarthritis: special emphasis on circRNAs in exosomes and the crosstalk of circRNAs and RNA methylation. Biochem Pharmacol 2023; 212:115580. [PMID: 37148980 DOI: 10.1016/j.bcp.2023.115580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
Osteoarthritis (OA) is an age-related joint disease with chronic inflammation, progressive articular cartilage destruction and subchondral bone sclerosis. CircRNAs (circRNAs) are a class of non-coding RNA with a circular structure that participate in a series of important pathophysiological processes of OA, especially its ceRNA mechanisms, and play an important role in OA. CircRNAs may be potential biomarkers for the diagnosis and prognosis of OA. Additionally, differentially expressed circRNAs were found in patients with OA, indicating that circRNAs are involved in the pathogenesis of OA. Experiments have shown that the intra-articular injection of modified circRNAs can effectively relieve OA. Exosomal circRNAs and methylated circRNAs also provide new ideas for the treatment of OA. Clarifying the important roles of circRNAs in OA will deepen people's understanding of the pathogenesis of OA. CircRNAs may be developed as new biomarkers or drug targets for the diagnosis of OA and provide new methods for the treatment of OA.
Collapse
Affiliation(s)
- Qiuyun Xue
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yurong Huang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Chang
- Department of Orthopaedics, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Public Health Clinical Center, Hefei, China.
| | - Chenglong Cheng
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yuting Wang
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaomei Wang
- Department of Humanistic Nursing, School of Nursing, Anhui University of Chinese Medicine, Hefei, China.
| | - Chenggui Miao
- Department of Pharmacology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China; Institute of Rheumatism, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Xiang M, Liu L, Wu T, Wei B, Liu H. RNA-binding proteins in degenerative joint diseases: A systematic review. Ageing Res Rev 2023; 86:101870. [PMID: 36746279 DOI: 10.1016/j.arr.2023.101870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs), which are conserved proteins comprising multiple intermediate sequences, can interact with proteins, messenger RNA (mRNA) of coding genes, and non-coding RNAs to perform different biological functions, such as the regulation of mRNA stability, selective polyadenylation, and the management of non-coding microRNA (miRNA) synthesis to affect downstream targets. This article will highlight the functions of RBPs, in degenerative joint diseases (intervertebral disc degeneration [IVDD] and osteoarthritis [OA]). It will reviews the latest advancements on the regulatory mechanism of RBPs in degenerative joint diseases, in order to understand the pathophysiology, early diagnosis and treatment of OA and IVDD from a new perspective.
Collapse
Affiliation(s)
- Min Xiang
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Tingrui Wu
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Bo Wei
- Department of Orthopedics, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China.
| | - Huan Liu
- Department of Orthopedics, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
11
|
Zhang H, Xiang X, Zhou B, Chen J, Sun Y, Zhang S, Li A, Li J. Circular RNA SLTM as a miR-421-competing endogenous RNA to mediate HMGB2 expression stimulates apoptosis and inflammation in arthritic chondrocytes. J Biochem Mol Toxicol 2023; 37:e23306. [PMID: 36935520 DOI: 10.1002/jbt.23306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/10/2022] [Accepted: 01/05/2023] [Indexed: 03/21/2023]
Abstract
Osteoarthritis (OA) is the most common age-related joint disease characterized by chronic inflammation, progressive articular cartilage destruction, and subchondral sclerosis. Accumulating evidence suggests that circular RNAs (circRNAs) play key roles in OA, but the function of circSLTM in OA remains greatly unknown. Therefore, this study focused on interleukin-1β (IL-1β)-treated primary human chondrocytes as well as a rat model to investigate the expression pattern and functional role of circSLTM in OA in vitro and in vivo. CircSLTM and high mobility group protein B2 (HMGB2) were upregulated in IL-1β-induced chondrocytes, whereas miR-421 was downregulated. Knockdown of circSLTM or overexpression of miR-421 ameliorated IL-1β-induced chondrocyte apoptosis and inflammation. The regulatory relationship between circSLTM and miR-421, as well as that between miR-421 and HMGB2, was predicted by bioinformatics and then verified by the RNA immunoprecipitation experiment and dual-luciferase reporter gene assay. Furthermore, silencing of circSLTM increased cartilage destruction and decreased cartilage tissue apoptosis rate and inflammation in a rat model of OA. Taken together, our findings demonstrate the fundamental role of circSLTM in OA progression and provide a potential molecular target for OA therapy.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - XiaoBing Xiang
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - BenGen Zhou
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - JianFa Chen
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - YouQiang Sun
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - ShuangXiao Zhang
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - AiHua Li
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| | - Jie Li
- Department of Fourth Orthopaedics, First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou City, Guangdong Province, China
| |
Collapse
|
12
|
Kim M, Rubab A, Chan WC, Chan D. Osteoarthritis year in review: genetics, genomics and epigenetics. Osteoarthritis Cartilage 2023:S1063-4584(23)00725-2. [PMID: 36924918 DOI: 10.1016/j.joca.2023.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
This "year in review" provides a summary of the research findings on the topic of genetics, genomics and epigenetics for osteoarthritis (OA) between Mar 2021-Apr 2022. A search routine of the literature in PubMed for the keyword, osteoarthritis, together with topics on genetics, genomics, epigenetics, polymorphism, DNA methylation, noncoding RNA, lncRNA, proteomics, and single cell RNA sequencing, returned key research articles and relevant reviews. Following filtering of duplicates across search routines, 695 unique research articles and 112 reviews were identified. We manually curated these articles and selected 90 as references for this review. However, we were unable to refer to all these articles, and only used selected articles to highlight key outcomes and trends. The trend in genetics is on the meta-analysis of existing cohorts with comparable genetic and phenotype characterisation of OA; in particular, clear definition of endophenotypes to enhance the genetic power. Further, many researchers are realizing the power of big data and multi-omics approaches to gain molecular insights for OA, and this has opened innovative approaches to include transcriptomics and epigenetics data as quantitative trait loci (QTLs). Given that most of the genetic loci for OA are not located within coding regions of genes, implying the impact is likely to be on gene regulation, epigenetics is a hot topic, and there is a surge in studies relating to the role of miRNA and long non-coding RNA on cartilage biology and pathology. The findings are exciting and new insights are provided in this review to summarize a year of research and the road map to capture all new innovations to achieve the desired goal in OA prevention and treatment.
Collapse
Affiliation(s)
- Minyeong Kim
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Aqsa Rubab
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wilson Cw Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
13
|
Chen Z, Huang Y, Chen Y, Yang X, Zhu J, Xu G, Shen S, Hu Z, Shi P, Ma Y, Fan S. CircFNDC3B regulates osteoarthritis and oxidative stress by targeting miR-525-5p/HO-1 axis. Commun Biol 2023; 6:200. [PMID: 36806251 PMCID: PMC9941484 DOI: 10.1038/s42003-023-04569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease associated with a variety of risk factors including aging, genetics, obesity, and mechanical disturbance. This study aimed to elucidate the function of a newly discovered circular RNA (circRNA), circFNDC3B, in OA progression and its relationship with the NF-κB signaling pathway and oxidative stress. The circFNDC3B/miR-525-5p/HO-1 axis and its relationship with the NF-κB signaling pathway and oxidative stress were investigated and validated using fluorescence in situ hybridization, real-time PCR, western blotting, immunofluorescence analysis, luciferase reporter assays, pull-down assays, and reactive oxygen species analyses. The functions of circFNDC3B in OA was investigated in vitro and in vivo. These evaluations demonstrated that circFNDC3B promotes chondrocyte proliferation and protects the extracellular matrix (ECM) from degradation. We also revealed that circFNDC3B defends against oxidative stress in OA by regulating the circFNDC3B/miR-525-5p/HO-1 axis and the NF-κB signaling pathway. Further, we found that overexpression of circFNDC3B alleviated OA in a rabbit model. In summary, we identified a new circFNDC3B/miR-525-5p/HO-1 signaling pathway that may act to relieve OA by alleviating oxidative stress and regulating the NF-κB pathway, resulting in the protection of the ECM in human chondrocytes, highlighting it as a potential therapeutic target for the treatment of OA.
Collapse
Affiliation(s)
- Zizheng Chen
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang University School of Medicine, Hangzhou, 310016 China
| | - Yizhen Huang
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang University School of Medicine, Hangzhou, 310016 China
| | - Yu Chen
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang University School of Medicine, Hangzhou, 310016 China
| | - Xiaodong Yang
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang University School of Medicine, Hangzhou, 310016 China
| | - Jinjin Zhu
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang University School of Medicine, Hangzhou, 310016 China
| | - Guang Xu
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,grid.13402.340000 0004 1759 700XZhejiang University School of Medicine, Hangzhou, 310016 China
| | - Shuying Shen
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang Province China
| | - Ziang Hu
- grid.13402.340000 0004 1759 700XDepartment of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016 Zhejiang Province China ,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016 Zhejiang Province China
| | - Peihua Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, Zhejiang Province, China.
| | - Yan Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, Zhejiang Province, China.
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
14
|
Guo X, Xi L, Yu M, Fan Z, Wang W, Ju A, Liang Z, Zhou G, Ren W. Regeneration of articular cartilage defects: Therapeutic strategies and perspectives. J Tissue Eng 2023; 14:20417314231164765. [PMID: 37025158 PMCID: PMC10071204 DOI: 10.1177/20417314231164765] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
Articular cartilage (AC), a bone-to-bone protective device made of up to 80% water and populated by only one cell type (i.e. chondrocyte), has limited capacity for regeneration and self-repair after being damaged because of its low cell density, alymphatic and avascular nature. Resulting repair of cartilage defects, such as osteoarthritis (OA), is highly challenging in clinical treatment. Fortunately, the development of tissue engineering provides a promising method for growing cells in cartilage regeneration and repair by using hydrogels or the porous scaffolds. In this paper, we review the therapeutic strategies for AC defects, including current treatment methods, engineering/regenerative strategies, recent advances in biomaterials, and present emphasize on the perspectives of gene regulation and therapy of noncoding RNAs (ncRNAs), such as circular RNA (circRNA) and microRNA (miRNA).
Collapse
Affiliation(s)
- Xueqiang Guo
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Lingling Xi
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Mengyuan Yu
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Zhenlin Fan
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Weiyun Wang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Andong Ju
- Abdominal Surgical Oncology, Xinxiang
Central Hospital, Institute of the Fourth Affiliated Hospital of Xinxiang Medical
University, Xinxiang, China
| | - Zhuo Liang
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
| | - Guangdong Zhou
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai,
China
- Guangdong Zhou, Department of Plastic and
Reconstructive Surgery, Shanghai Key Lab of Tissue Engineering, Shanghai 9th
People’s Hospital, Shanghai Jiao Tong University School of Medicine, 639
Shanghai Manufacturing Bureau Road, Shanghai 200011, China.
| | - Wenjie Ren
- Institutes of Health Central Plain, The
Third Affiliated Hospital of Xinxiang Medical University, Clinical Medical Center of
Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang,
China
- Wenjie Ren, Institute of Regenerative
Medicine and Orthopedics, Institutes of Health Central Plain, Xinxiang Medical
University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, Henan, China.
| |
Collapse
|
15
|
Abstract
Bone is a connective tissue that has important functions in the human body. Cells and the extracellular matrix (ECM) are key components of bone and are closely related to bone-related diseases. However, the outcomes of conventional treatments for bone-related diseases are not promising, and hence it is necessary to elucidate the exact regulatory mechanisms of bone-related diseases and identify novel biomarkers for diagnosis and therapy. Circular RNAs (circRNAs) are single-stranded RNAs that form closed circular structures without a 5' cap or 3' tail and polycyclic adenylate tails. Due to their high stability, circRNAs have the potential to be typical biomarkers. Accumulating evidence suggests that circRNAs are involved in bone-related diseases, including osteoarthritis, osteoporosis, osteosarcoma, multiple myeloma, intervertebral disc degeneration, and rheumatoid arthritis. Herein, we summarize the recent research progress on the characteristics and functions of circRNAs, and highlight the regulatory mechanism of circRNAs in bone-related diseases.
Collapse
Affiliation(s)
- Linghui HU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Wei WU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China
| | - Jun ZOU
- School of Exercise and Health, Shanghai University of Sport, Shanghai200438, China,Jun ZOU,
| |
Collapse
|
16
|
Yi Q, Deng Z, Yue J, He J, Xiong J, Sun W, Sun W. RNA binding proteins in osteoarthritis. Front Cell Dev Biol 2022; 10:954376. [PMID: 36003144 PMCID: PMC9393224 DOI: 10.3389/fcell.2022.954376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.
Collapse
Affiliation(s)
- Qian Yi
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jinglong He
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- The Central Laboratory, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| |
Collapse
|
17
|
Liao H, Tu Q, Kang Y, Mao G, Li Z, Hu S, Sheng P, Wang X, Xu Y, Long D, Xu Y, Kang Y, Zhang Z. CircNFIX
regulates chondrogenesis and cartilage homeostasis by targeting the
miR758
‐3p/
KDM6A
axis. Cell Prolif 2022; 55:e13302. [PMID: 35791460 PMCID: PMC9628241 DOI: 10.1111/cpr.13302] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/29/2022] [Accepted: 06/16/2022] [Indexed: 01/20/2023] Open
Abstract
Objectives Osteoarthritis (OA) is a degenerative disease causing the progressive destruction of articular cartilage; however, the aetiology has not yet been elucidated. Circular RNAs (circRNAs) are reportedly involved in cartilage degeneration and OA development. In the present study, we identified that circNFIX regulates chondrogenesis and cartilage homeostasis. Materials and Methods Microarray analysis was performed to explore circRNA expression during the chondrogenic differentiation of human adipose‐drived stem cells (hADSCs). CircNFIX expression was determined using quantitative reverse transcription‐polymerase chain reaction and in situ hybridization. Gain‐ and loss‐of‐function assays were performed to validate the role of circNFIX in cartilage homeostasis. RNA pull‐down, Argonaute2‐RNA immunoprecipitation and luciferase reporter assays were performed to evaluate the interactions among circNFIX, miR758‐3p and KDM6A. Results CircNFIX expression was upregulated in the early and middle stages, whereas downregulated in the late stage of hADSC chondrogenesis. CircNFIX inhibition attenuated hADSC chondrogenesis. CircNFIX was remarkably downregulated in OA samples, circNFIX overexpression protected against chondrocyte degradation and alleviated OA progression in the destabilization of the medial meniscus OA model. Mechanistically, circNFIX acted as a sponge of miR758‐3p and played a role in the chondrogenesis and chondrocyte degeneration by targeting the miR‐758‐3p/KDM6A axis. Conclusions Our results revealed a key role of circNFIX in chondrogenesis and cartilage homeostasis, which may provide a potential therapeutic strategy for OA treatment.
Collapse
Affiliation(s)
- Hongyi Liao
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Qingqiang Tu
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yunze Kang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Guping Mao
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Zhiwen Li
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Shu Hu
- Department of Joint Surgery, Center for Orthopaedic Surgery The Third Affiliated Hospital of Southern Medical University Guangzhou China
| | - Puyi Sheng
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Xudong Wang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yiyang Xu
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Dianbo Long
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yuanyuan Xu
- Department of Pediatric Nephrology and Rheumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Yan Kang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Ziji Zhang
- Department of Joint Surgery, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital Sun Yat‐sen University Guangzhou China
| |
Collapse
|
18
|
Zeng CY, Wang XF, Hua FZ. HIF-1α in Osteoarthritis: From Pathogenesis to Therapeutic Implications. Front Pharmacol 2022; 13:927126. [PMID: 35865944 PMCID: PMC9294386 DOI: 10.3389/fphar.2022.927126] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a common age-related joint degenerative disease. Pain, swelling, brief morning stiffness, and functional limitations are its main characteristics. There are still no well-established strategies to cure osteoarthritis. Therefore, better clarification of mechanisms associated with the onset and progression of osteoarthritis is critical to provide a theoretical basis for the establishment of novel preventive and therapeutic strategies. Chondrocytes exist in a hypoxic environment, and HIF-1α plays a vital role in regulating hypoxic response. HIF-1α responds to cellular oxygenation decreases in tissue regulating survival and growth arrest of chondrocytes. The activation of HIF-1α could regulate autophagy and apoptosis of chondrocytes, decrease inflammatory cytokine synthesis, and regulate the chondrocyte extracellular matrix environment. Moreover, it could maintain the chondrogenic phenotype that regulates glycolysis and the mitochondrial function of osteoarthritis, resulting in a denser collagen matrix that delays cartilage degradation. Thus, HIF-1α is likely to be a crucial therapeutic target for osteoarthritis via regulating chondrocyte inflammation and metabolism. In this review, we summarize the mechanism of hypoxia in the pathogenic mechanisms of osteoarthritis, and focus on a series of therapeutic treatments targeting HIF-1α for osteoarthritis. Further clarification of the regulatory mechanisms of HIF-1α in osteoarthritis may provide more useful clues to developing novel osteoarthritis treatment strategies.
Collapse
Affiliation(s)
- Chu-Yang Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xi-Feng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| | - Fu-Zhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Xi-Feng Wang, ; Fu-Zhou Hua,
| |
Collapse
|
19
|
Xu D, Ma X, Sun C, Han J, Zhou C, Wong SH, Chan MTV, Wu WKK. Circular RNAs in Intervertebral Disc Degeneration: An Updated Review. Front Mol Biosci 2022; 8:781424. [PMID: 35071323 PMCID: PMC8770867 DOI: 10.3389/fmolb.2021.781424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/13/2021] [Indexed: 01/26/2023] Open
Abstract
Low back pain, a common medical condition, could result in severe disability and inflict huge economical and public health burden. Its pathogenesis is attributed to multiple etiological factors, including intervertebral disc degeneration (IDD). Emerging evidence suggests that circular RNAs (circRNAs), a major type of regulatory non-coding RNA, play critical roles in cellular processes that are pertinent to IDD development, including nucleus pulposus cell proliferation and apoptosis as well as extracellular matrix deposition. Increasing number of translational studies also indicated that circRNAs could serve as novel biomarkers for the diagnosis of IDD and/or predicting its clinical outcomes. Our review aims to discuss the recent progress in the functions and mechanisms of newly discovered IDD-related circRNAs.
Collapse
Affiliation(s)
- Derong Xu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chong Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jialuo Han
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chuanli Zhou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
20
|
Kong H, Sun ML, Zhang XA, Wang XQ. Crosstalk Among circRNA/lncRNA, miRNA, and mRNA in Osteoarthritis. Front Cell Dev Biol 2022; 9:774370. [PMID: 34977024 PMCID: PMC8714905 DOI: 10.3389/fcell.2021.774370] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a joint disease that is pervasive in life, and the incidence and mortality of OA are increasing, causing many adverse effects on people's life. Therefore, it is very vital to identify new biomarkers and therapeutic targets in the clinical diagnosis and treatment of OA. ncRNA is a nonprotein-coding RNA that does not translate into proteins but participates in protein translation. At the RNA level, it can perform biological functions. Many studies have found that miRNA, lncRNA, and circRNA are closely related to the course of OA and play important regulatory roles in transcription, post-transcription, and post-translation, which can be used as biological targets for the prevention, diagnosis, and treatment of OA. In this review, we summarized and described the various roles of different types of miRNA, lncRNA, and circRNA in OA, the roles of different lncRNA/circRNA-miRNA-mRNA axis in OA, and the possible prospects of these ncRNAs in clinical application.
Collapse
Affiliation(s)
- Hui Kong
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Ming-Li Sun
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
21
|
Xu D, Ma X, Sun C, Han J, Zhou C, Chan MTV, Wu WKK. Emerging roles of circular RNAs in neuropathic pain. Cell Prolif 2021; 54:e13139. [PMID: 34623006 PMCID: PMC8666284 DOI: 10.1111/cpr.13139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/22/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain is a major type of chronic pain caused by the disease or injury of the somatosensory nervous system. It afflicts about 10% of the general population with a significant proportion of patients’ refractory to conventional medical treatment. This highlights the importance of a better understanding of the molecular pathogenesis of neuropathic pain so as to drive the development of novel mechanism‐driven therapy. Circular RNAs (circRNAs) are a type of non‐coding, regulatory RNAs that exhibit tissue‐ and disease‐specific expression. An increasing number of studies reported that circRNAs may play pivotal roles in the development of neuropathic pain. In this review, we first summarize circRNA expression profiling studies on neuropathic pain. We also highlight the molecular mechanisms of specific circRNAs (circHIPK3, circAnks1a, ciRS‐7, cZRANB1, circZNF609 and circ_0005075) that play key functional roles in the pathogenesis of neuropathic pain and discuss their potential diagnostic, prognostic, and therapeutic utilization in the clinical management of neuropathic pain.
Collapse
Affiliation(s)
- Derong Xu
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xuexiao Ma
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chong Sun
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jialuo Han
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chuanli Zhou
- Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Ni W, Jiang C, Wu Y, Zhang H, Wang L, Yik JHN, Haudenschild DR, Fan S, Shen S, Hu Z. CircSLC7A2 protects against osteoarthritis through inhibition of the miR-4498/TIMP3 axis. Cell Prolif 2021; 54:e13047. [PMID: 33960555 PMCID: PMC8168424 DOI: 10.1111/cpr.13047] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives Circular RNAs (circRNAs) are noncoding RNAs that compete against other endogenous RNA species, such as microRNAs, and have been implicated in many diseases. In this study, we investigated the role of a new circRNA (circSLC7A2) in osteoarthritis (OA). Materials and Methods The relative expression of circSLC7A2 was significantly lower in OA tissues than it was in matched controls, as shown by real‐time quantitative polymerase chain reaction (RT‐qPCR). Western blotting, RT‐qPCR and immunofluorescence experiments were employed to evaluate the roles of circSLC7A2, miR‐4498 and TIMP3. The in vivo role and mechanism of circSLC7A2 were also conformed in a mouse model. Results circSLC7A2 was decreased in OA model and the circularization of circSLC7A2 was regulated by FUS. Loss of circSLC7A2 reduced the sponge of miR‐4498 and further inhibited the expression of TIMP3, subsequently leading to an inflammatory response. We further determined that miR‐4498 inhibitor reversed circSLC7A2‐knockdown‐induced OA phenotypes. Intra‐articular injection of circSLC7A2 alleviated in vivo OA progression in a mouse model of anterior cruciate ligament transection (ACLT). Conclusions The circSLC7A2/miR‐4498/TIMP3 axis of chondrocytes catabolism and anabolism plays a critical role in OA development. Our results suggest that circSLC7A2 may serve as a new therapeutic target for osteoarthritis.
Collapse
Affiliation(s)
- Weiyu Ni
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Yizheng Wu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Haitao Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Lili Wang
- School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou, PR China
| | - Jasper H N Yik
- Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California System, Davis, CA, USA
| | - Dominik R Haudenschild
- Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California System, Davis, CA, USA
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| | - Ziang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Hangzhou, China
| |
Collapse
|