1
|
Yan H, Zhou T, Wang Y, Liu Z, Ali I, Sheng L, Jiang Q, Li T, Xiang M, Li P, Zhang W, Teng Y, Li H, Liu Y, Cai Y. CDK5RAP3, a key defender of udder, modulates NLRP3 inflammasome activation by regulating autophagolysosome degradation in S. agalactiae-infected mastitis. Int J Biol Macromol 2023; 234:123714. [PMID: 36806767 DOI: 10.1016/j.ijbiomac.2023.123714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/21/2023]
Abstract
Streptococcus agalactiae, as one of the main pathogens of clinical and subclinical mastitis, affects animal welfare and leads to huge economic losses to farms due to the sharp decline in milk yield. However, both the real pathogenic mechanisms of S. agalactiae-induced mastitis and the regulator which controls the inflammation and autophagy are largely unknown. Served as a substrate of ubiquitin-like proteins of E3 ligase, CDK5RAP3 is widely involved in the regulation of multiple signaling pathways. Our findings revealed that CDK5RAP3 was significantly down-regulated in mastitis infected by S. agalactiae. Surprisingly, inflammasome activation was triggered by CDK5RAP3 knockdown: up-regulated NLRP3, IL1β and IL6, and cleaved caspase1 promoting by NF-κB, thereby resulting in pyroptosis. Additionally, the accumulation of autophagy markers (LC3B and p62) after CDK5RAP3 knockdown suggested that the autophagolysosome degradation pathway was inhibited, thereby activating the NF-κB pathway and NLRP3 inflammasome. Hence, our findings suggest that downregulation or ablation of CDK5RAP3 inhibits autophagolysosome degradation, causes inflammation by activating the NF-κB /NLRP3 inflammasome, and triggers cell death. In conclusion, CDK5RAP3 holds the key to understanding the interaction between autophagy and immune responses, its anti-inflammatory role in this study will throw new light on the clinical drug discovery to cure S. agalactiae mastitis.
Collapse
Affiliation(s)
- Hongchen Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianci Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongsheng Wang
- Department of Respiratory Medicine, Nanjing Drum Tower Hospital Affiliated to Medical school of Nanjing University, Nanjing 210008, China
| | - Zhengcheng Liu
- Department of Cardiovascular and Thoracic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Sheng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiang Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tao Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Minghui Xiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yang Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging. Cells 2022; 11:cells11233713. [PMID: 36496972 PMCID: PMC9738202 DOI: 10.3390/cells11233713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Reproductive aging is on the rise globally and inseparable from the entire aging process. An extreme form of reproductive aging is premature ovarian insufficiency (POI), which to date has mostly been of idiopathic etiology, thus hampering further clinical applications and associated with enormous socioeconomic and personal costs. In the field of reproduction, the important functional role of inflammation-induced ovarian deterioration and therapeutic strategies to prevent ovarian aging and increase its function are current research hotspots. This review discusses the general pathophysiology and relative causes of POI and comprehensively describes the association between the aging features of POI and infertility. Next, various preclinical studies of stem cell therapies with potential for POI treatment and their molecular mechanisms are described, with particular emphasis on the use of human induced pluripotent stem cell (hiPSC) technology in the current scenario. Finally, the progress made in the development of hiPSC technology as a POI research tool for engineering more mature and functional organoids suitable as an alternative therapy to restore infertility provides new insights into therapeutic vulnerability, and perspectives on this exciting research on stem cells and the derived exosomes towards more effective POI diagnosis and treatment are also discussed.
Collapse
|
3
|
Ali I, Li C, Kuang M, Shah AU, Shafiq M, Ahmad MA, Abdalmegeed D, Li L, Wang G. Nrf2 Activation and NF-Kb & caspase/bax signaling inhibition by sodium butyrate alleviates LPS-induced cell injury in bovine mammary epithelial cells. Mol Immunol 2022; 148:54-67. [PMID: 35671559 DOI: 10.1016/j.molimm.2022.05.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/17/2022] [Accepted: 05/29/2022] [Indexed: 12/23/2022]
Abstract
Mastitis, an inflammation of the mammary gland, is a complex disease that affects the health of dairy cows worldwide. Sodium butyrate (SB) is a short-chain fatty acid that has recently been shown to have antioxidant, anti-inflammatory and anti-apoptotic potential in various cells types, although its role in bovine mammary epithelial cells (bMECs) has not been comprehensively reported. Therefore, the aim of this study was to assess the protective effect of sodium butyrate on Lipopolysaccharide (LPS)-induced mastitis model in vitro and to elucidate the possible underlying molecular mechanisms. The in vitro mastitis model was designed to investigate the regulatory effect of SB on LPS-induced inflammatory conditions in bMECs, with particular emphasis on oxidative stress, inflammatory response, apoptosis, and mitochondrial dysfunction. The results showed that SB co-treatment markedly prevented LPS-induced death of bMECs in a concentration-dependent manner. In addition, SB attenuated LPS-induced oxidative stress (OS) (Increased Intracellular ROS, MDA, and decreased SOD, GSH-Px and CAT activity), thereby reduced inflammation (increased expression of IL-6, IL-Iβ, and TNF-α), and apoptosis (Increased the expression of caspases and Bax and decreased Bcl-2) via inhibiting NF-kB and caspase/bax signaling pathways. Furthermore, the protective effect of SB was also associated with the activation of endogenous antioxidant system (Nrf2, Keap1, NQO-1 and HO-1). Nrf2 silencing significantly abolished the protective effect of SB on bMECs. In conclusion, our findings suggest that SB has a significant protective effect on LPS-induced OS, inflammatory responses and apoptosis by activating Nrf2 and inhibiting NF-kB and ROS-mediated mitochondrial dysfunction. These results propose that SB may be an important regulator of OS and its subsequent inflammatory responses, and thus could be used as a therapeutic agent for bovine mastitis.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Science Center, Shenzhen University, Shenzhen 518060, China; College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengmin Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Meqian Kuang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Abid Ullah Shah
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Shafiq
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Dyaaaldin Abdalmegeed
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; Microbiology section, Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Lian Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Genlin Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|