1
|
Zhang X, Feng C, Yuan T, Wang Y, Wang H, Lu Q, Lv Y, Li Z, Fu C, Sun S. Inhibition of protein disulfide isomerase mitigates steroid-induced osteonecrosis of the femoral head by suppressing osteoclast activity through the reduction of cellular oxidative stress. Chem Biol Interact 2024; 404:111263. [PMID: 39393751 DOI: 10.1016/j.cbi.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/21/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Osteonecrosis of the femoral head (ONFH) is a devastating and irreversible hip disease usually associated with increased oxidative stress due to the clinical application of high-dose or long-term glucocorticoids (GCs). Previous publications have demonstrated protein disulfide isomerase (PDI) plays a critical role in regulating cellular production of reactive oxygen species (ROS). We therefore ask whether interfering PDI could affect GCs-stimulated osteoclastogenesis. To test the hypothesis, we conducted bioinformatics and network analysis based on potential gene targets of steroid-induced osteonecrosis of the femoral head (SIONFH) in light of multiple databases and concomitantly verified the associated biological effect via the in vitro model of dexamethasone (DEX)-stimulated osteoclastogenesis. The results revealed 70 potential gene targets for SIONFH intervention, including the P4HB gene that encodes PDI. Further analysis based on network topology-based analysis techniques (NTA), protein-protein interaction (PPI) networks, and mouse cell atlas database identified the importance of PDI in regulating the cellular redox state of osteoclast during ONFH. Western blotting (WB) validations also indicated that PDI may be a positive regulator in the process of DEX-stimulated osteoclastogenesis. Hence, various PDI inhibitors were subjected to molecular docking with PDI and their performances were analyzed, including 3-Methyltoxoflavin (3 M) which inhibits PDI expression, and ribostamycin sulfate (RS) which represses PDI chaperone activity. The binding energies of DEX, 3 M, and RS to PDI were -5.3547, -4.2324, and -5.9917 kcal/mol, respectively. The Protein-Ligand Interaction Profiler (PLIP) analysis demonstrated that both hydrogen bonds and hydrophobic interactions were the key contributions to the DEX-PDI and 3M-PDI complexes, while only hydrogen bonds were identified as the predominant driving forces in the RS-PDI complex. Subsequent experiments showed that both 3 M and RS reduced osteoclast differentiation and bone resorption activity by stifling the expression of osteoclastic markers. This reduction was primarily due to the PDI inhibitors boosting the antioxidant system, thereby reducing the production of intracellular ROS. In conclusion, our results supported PDI's involvement in SIONFH progression by regulating ROS in osteoclasts and highlighted PDI inhibitors may serve as potential options for SIONFH treatment.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - YongShuang Lv
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Chuanyun Fu
- Department of Stomatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
2
|
Xie Y, Liang S, Zhang Y, Wu T, Shen Y, Yao S, Li J. Discovery of indole analogues from Periplaneta americana extract and their activities on cell proliferation and recovery of ulcerative colitis in mice. Front Pharmacol 2023; 14:1282545. [PMID: 37927593 PMCID: PMC10623332 DOI: 10.3389/fphar.2023.1282545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
Background: As an important medicinal insect, Periplaneta americana (PA) has been applied for the treatment of wounds, burns, and ulcers with fewer side effects and a reduced recurrence rate, which provides great potential for developing new drugs based on its active constituents. Materials and methods: The main chromatographic peaks determined by high performance liquid chromatography (HPLC) in the PA concentrated ethanol-extract liquid (PACEL) were separated, purified, and identified by semi-preparative LC, mass spectrum, and 1H NMR spectroscopic analysis. The biological activities of the identified compounds were investigated by methylthiazolyldiphenyl-tetrazolium bromide (MTT) method based on in vitro human skin fibroblasts (HSF) and in vivo experiments based on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mouse model. Furthermore, RT-qPCR of six genes related to inflammation or intestinal epithelial cell proliferation was employed to investigate the molecular mechanism of the indole analogues recovering UC in mice. Results: Five indole analogues were purified and identified from PACEL, including tryptophan (Trp), tryptamine (pa01), 1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa02), (1S, 3S)-1-methyl-1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa03), and (1R, 3S)-1-methyl-1,2,3,4-tetrahydrogen-β-carboline-3-carboxylic acid (pa04), among which the pa02 and pa04 were reported in PA for the first time. In vitro and in vivo experiments showed that PACEL, Trp, and pa02 had promoting HSF proliferation activity and intragastric administration of them could alleviate symptoms of weight loss and colon length shortening in the UC mice. Although recovery activity of the compound pa01 on the colon length was not as obvious as other compounds, it showed anti-inflammatory activity in histological analysis. In addition, The RT-qPCR results indicated that the three indole analogues could alleviate DSS-induced intestinal inflammation in mice by inhibiting pro-inflammatory cytokines (MMP7, IL1α) and down-regulating BMP8B expression. Conclusion: This study reported the isolation, purification, structure identification, and biological activity of the active indole analogues in PACEL. It was found for the first time that the PA extract contained many indole analogues and Trp, which exhibited good proliferation activity on HSF fibroblasts as well as anti-UC activity in mice. These indole analogues probably are important components related to the pharmacological activity in PA.
Collapse
Affiliation(s)
- Yuchen Xie
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Siwei Liang
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Yifan Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Taoqing Wu
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Yongmei Shen
- Sichuan Key Laboratory of Medical American Cockroach, Chengdu, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Phytochemical Profiling, Isolation, and Pharmacological Applications of Bioactive Compounds from Insects of the Family Blattidae Together with Related Drug Development. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248882. [PMID: 36558015 PMCID: PMC9782659 DOI: 10.3390/molecules27248882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
In traditional Chinese medicine (TCM), insects from the family Blattidae have a long history of application, and their related active compounds have excellent pharmacological properties, making them a prominent concern with significant potential for medicinal and healthcare purposes. However, the medicinal potential of the family Blattidae has not been fully exploited, and many problems must be resolved urgently. Therefore, a comprehensive review of its chemical composition, pharmacological activities, current research status, and existing problems is necessary. In order to make the review clearer and more systematic, all the contents were independently elaborated and summarized in a certain sequence. Each part started with introducing the current situation or a framework and then was illustrated with concrete examples. Several pertinent conclusions and outlooks were provided after discussing relevant key issues that emerged in each section. This review focuses on analyzing the current studies and utilization of medicinal insects in the family Blattidae, which is expected to provide meaningful and valuable relevant information for researchers, thereby promoting further exploration and development of lead compounds or bioactive fractions for new drugs from the insects.
Collapse
|