1
|
Peng X, Wang S, Wu K, Cook C, Li L, Wang Z, Gu H, Lu M, Hu G, Ren K, Hu G, Zeng W, Xia Y, Liu Y. Effect of opioid receptor antagonist on mitigating tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-induced apoptolysis in pemphigus pathogenesis. J Autoimmun 2024; 149:103307. [PMID: 39276627 DOI: 10.1016/j.jaut.2024.103307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Pemphigus is a severe autoimmune blistering disease characterized by acantholysis triggered by autoantibodies against desmoglein 1 and 3 (DSG1/3). Apoptosis plays a pivotal role in facilitating acantholysis, yet the precise underlying mechanism remains obscure. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) is known to promote apoptosis and disrupt cell junctions, although its involvement in pemphigus pathogenesis remains ambiguous. Our study observed decreased DSG1/3 expression alongside increased TWEAK/fibroblast growth factor-inducible 14 (Fn14) expression and keratinocyte apoptosis in both lesional and perilesional skin. In vitro experiments revealed that TWEAK-stimulated keratinocytes exhibited enhanced apoptosis, STAT1 phosphorylation, and reduced intercellular DSG1/3 expression. Notably, bulk-RNA sequencing unveiled that CASPASE-3 was responsible for mediating the DSG1/3 depletion, as confirmed by direct interaction with DSG1/3 in a co-immunoprecipitation assay. Naloxone, known for preserving cellular adhesion and preventing cell death, effectively reduced apoptosis and restored DSG1/3 levels in TWEAK-stimulated keratinocytes. The anti-apoptotic properties of naloxone were further validated in a murine pemphigus model. Our findings elucidate that TWEAK facilitates keratinocyte apoptosis by augmenting caspase-3 activity, leading to DSG1/3 depletion and apoptosis in pemphigus. Importantly, naloxone can counter TWEAK-induced apoptosis in pemphigus pathogenesis, offering a potential therapeutic intervention.
Collapse
Affiliation(s)
- Xueting Peng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Sijia Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Kunyi Wu
- Core Research Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Christopher Cook
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Liang Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Zhao Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Guanglei Hu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Kaixuan Ren
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Gang Hu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weihui Zeng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Yale Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
2
|
Feng A, Li C, Su S, Liu Y. 1,25(OH)2D3 supplementation alleviates gut-vascular barrier disruption via inhibition of S100B/ADAM10 pathway. Tissue Barriers 2024; 12:2327776. [PMID: 38494646 PMCID: PMC11583585 DOI: 10.1080/21688370.2024.2327776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
Gut-vascular barrier (GVB) is the second barrier in mucosa to control systemic dissemination of gut bacteria. Severe burns induce enteroglial cells to produce S100B and endothelial cells to generate ADAM10 and cause vitamin D3 insufficiency/deficiency and GVB disruption. It is not clear whether vitamin D3 supplementation attenuates GVB damage via regulation of S100B/ADAM10 pathway. Here, GVB disruption was induced by 30% of total body surface area scalds. Rats were treated with 1,25(OH)2D3 (0.05, 0.5 or 5 μg/kg) or S100B monoclonal antibody (S100BmAb, 10 μg/kg) or GI254023X (ADAM10 inhibitor, 100 mg/kg). Rat enteric glial cell-line CRL2690 and rat intestinal microvascular endothelial cells (RIMECs) were treated with S100B (5 μM) or plus 1,25(OH)2D3 (0.05, 0.5 or 5 μM) or GI254023X (5 μM). S100B, TNF-α, 25(OH)D3 and 1,25(OH)2D3 in serum and gut mucosa were determined by enzyme-linked immunosorbent assay. The endothelial permeability was measured using FITC-dextran 70 kDa. ADAM10 and β-catenin expression was assayed by Western blot. The results showed that 1,25(OH)2D3 and 25(OH)D3 concentration in serum reduced whereas TNF-α and S100B in serum and gut mucosa increased in burned rats. S100BmAb, GI254023X and 1,25(OH)2D3 treatment lowered burns-increased GVB permeability. 1,25(OH)2D3 also decreased S100B concentration in serum and gut mucosa. 1,25(OH)2D3 inhibited S100B release from TNF-α-treated CRL2690 and raised β-catenin while decreasing ADAM10 protein in S100B-treated RIMECs. 1,25(OH)2D3 and GI254023X also decreased the endothelial permeability of S100B-treated RIMECs. Collectively, these findings provide evidence that severe burns lower serum 25(OH)D3 and 1,25(OH)2D3 concentration. 1,25(OH)2D3 supplementation alleviates burns-elicited GVB disruption via inhibition of S100B/ADAM10 signaling.
Collapse
Affiliation(s)
- Aiwen Feng
- Department of General Surgery, Maoming People's Hospital, Southern Medical University, Zhanjiang, China
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| | - Cheng Li
- Department of General Surgery, Maoming People's Hospital, Southern Medical University, Zhanjiang, China
| | - Shaosheng Su
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| | - Yingyan Liu
- Department of General Surgery, Maoming People's Hospital, Guangdong Medical University, Guangzhou, China
| |
Collapse
|