1
|
Wei X, Li H, Qiu J, Jiao J, Guo X, Yin G, Yang P, Han Y, Zhao Q, Zeng H, Rao Z, Gao X, Li K, Lai P, Zhang S, Yang C, Lu D, Bai X. Tree shrew as a new animal model for musculoskeletal disorders and aging. Bone Res 2025; 13:5. [PMID: 39746902 PMCID: PMC11697419 DOI: 10.1038/s41413-024-00367-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/31/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025] Open
Abstract
Intervertebral disc degeneration (IDD), osteoarthritis (OA), and osteoporosis (OP) are common musculoskeletal disorders (MSDs) with similar age-related risk factors, representing the leading causes of disability. However, successful therapeutic development and translation have been hampered by the lack of clinically-relevant animal models. In this study, we investigated the potential suitability of the tree shrew, a small mammal with a close genetic relationship to primates, as a new animal model for MSDs. Age-related spontaneous IDD in parallel with a gradual disappearance of notochordal cells were commonly observed in tree shrews upon skeletal maturity with no sex differences, while age-related osteoporotic changes including bone loss in the metaphyses were primarily presented in aged females, similar to observations in humans. Moreover, in the osteochondral defect model, tree shrew cartilage exhibited behavior similar to that of humans, characterized by a more restricted self-healing capacity compared to the rapid spontaneous healing of joint surfaces observed in rats. The induced OA model in tree shrews was highly efficient and reproducible, characterized by gradual deterioration of articular cartilage, recapitulating the human OA phenotype to some degree. Surgery-induced IDD models were successfully established in tree shrews, in which the lumbar spine instability model developed slow progressive disc degeneration with more similarity to the clinical state, whereas the needle puncture model led to the rapid development of IDD with more severe symptoms. Taken together, our findings pave the way for the development of the tree shrew as a new animal model for the study of MSDs and aging.
Collapse
Affiliation(s)
- Xiaocui Wei
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Honghao Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Jingyang Qiu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianlin Jiao
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Xiongtian Guo
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Gaosheng Yin
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Ping Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China
| | - Qiongzhi Zhao
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hao Zeng
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi Rao
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Xuefei Gao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chengliang Yang
- Guangxi Key Laboratory for Biomedical Material Research, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, China.
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, School of Rehabilitation, Kunming Medical University, Kunming, 650500, China.
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
2
|
Huo G, Lin Y, Liu L, He Y, Qu Y, Liu Y, Zhu R, Wang B, Gong Q, Han Z, Yin H. Decoding ferroptosis: transforming orthopedic disease management. Front Pharmacol 2024; 15:1509172. [PMID: 39712490 PMCID: PMC11659002 DOI: 10.3389/fphar.2024.1509172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/22/2024] [Indexed: 12/24/2024] Open
Abstract
As a mechanism of cell death, ferroptosis has gained popularity since 2012. The process is distinguished by iron toxicity and phospholipid accumulation, in contrast to autophagy, apoptosis, and other cell death mechanisms. It is implicated in the advancement of multiple diseases across the body. Researchers currently know that osteosarcoma, osteoporosis, and other orthopedic disorders are caused by NRF2, GPX4, and other ferroptosis star proteins. The effective relief of osteoarthritis symptoms from deterioration has been confirmed by clinical treatment with multiple ferroptosis inhibitors. At the same time, it should be reminded that the mechanisms involved in ferroptosis that regulate orthopedic diseases are not currently understood. In this manuscript, we present the discovery process of ferroptosis, the mechanisms involved in ferroptosis, and the role of ferroptosis in a variety of orthopedic diseases. We expect that this manuscript can provide a new perspective on clinical diagnosis and treatment of related diseases.
Collapse
Affiliation(s)
- Guanlin Huo
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lusheng Liu
- Department of Acupuncture and Moxibustion, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Yi Qu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Renhe Zhu
- Department of Blood Transfusion, Lu’an People’s Hospital, The Affiliated Hospital of Anhui Medical University, Lu’an, China
| | - Bo Wang
- Department of Orthopaedics, The Eighth Medical Center of PLA General Hospital, Beijing, China
| | - Qing Gong
- Orthopaedic Center, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhongyu Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Hongbing Yin
- Orthopedic Center, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Elmounedi N, Bahloul W, Keskes H. Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Mol Diagn Ther 2024; 28:745-775. [PMID: 39158834 DOI: 10.1007/s40291-024-00729-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2024] [Indexed: 08/20/2024]
Abstract
Intervertebral disc degeneration (IDD) is one of the most frequent causes of low back pain. No treatment is currently available to delay the progression of IDD. Conservative treatment or surgical interventions is only used to target the symptoms of IDD rather than treat the underlying cause. Currently, numerous potential therapeutic strategies are available, including molecular therapy, gene therapy, and cell therapy. However, the hostile environment of degenerated discs is a major problem that has hindered the clinical applicability of such approaches. In this regard, the design of drugs using alternative delivery systems (macro-, micro-, and nano-sized particles) may resolve this problem. These can protect and deliver biomolecules along with helping to improve the therapeutic effect of drugs via concentrating, protecting, and prolonging their presence in the degenerated disc. This review summarizes the research progress of diagnosis and the current options for treating IDD.
Collapse
Affiliation(s)
- Najah Elmounedi
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia.
| | - Walid Bahloul
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| | - Hassib Keskes
- Cell Therapy and Experimental Surgery of Musculoskeletal System LR18SP11 Lab, Sfax Faculty of Medicine, Majida Boulila Road, 3029, Sfax, Tunisia
- Department of Orthopedics and Traumatology, CHU Habib Bourguiba, Sfax, Tunisia
| |
Collapse
|
4
|
Chen ZX, Xu B, Huang ZL, Liu YJ, Li YW, Lu BJ, Lin J, Zhang XD, Shen XF. Causal relationship between systemic circulatory inflammatory regulators and intervertebral disc degeneration: A bidirectional 2-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e39521. [PMID: 39252217 PMCID: PMC11384059 DOI: 10.1097/md.0000000000039521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
In the context of the development of intervertebral disc degeneration (IDD), inflammatory mediators play a pivotal role. Nevertheless, due to the influence of the inflammatory microenvironment, the causal relationship between specific inflammatory mediators and the development of IDD remains uncertain. The understanding of the causal relationship between inflammatory mediators and IDD is of great importance in preventing and delaying disc degeneration in the future. We utilized genetic data concerning systemic circulating inflammatory regulators obtained from a Genome-Wide Association Study (GWAS) analyzing 41 serum cytokines in a cohort of 8293 individuals from Finland. The genetic data for IDD were derived from the most recent GWAS summary statistics conducted within the FinnGen consortium, encompassing 37,636 IDD cases and 270,964 controls. Our analysis employed bidirectional 2-sample Mendelian randomization (MR) techniques, which included several MR methods such as MR Egger, weighted median, inverse variance weighted, weighted mode, and simple mode. Additionally, the MR-PRESSO method was employed to identify horizontal pleiotropy, heterogeneity was quantified using the Cochran Q statistic, and MR-Egger intercept analysis was performed to assess pleiotropy. We established causal relationships between 3 specific inflammatory factors and IDD. Elevated levels of MIP-1β (OR = 0.956, 95% CI: -0.08 to -0.006; P = .02) and IFN-G (OR = 0.915, 95% CI: -0.16 to -0.02; P = .01) expression were associated with a reduced risk of IDD. Conversely, genetic susceptibility to IDD was linked to a decrease in IL-13 levels (OR = 0.967, 95% CI: -0.063 to -0.004; P = .03). In this study, we have identified inflammatory factors that exhibit a causal relationship with the onset and progression of IDD, as supported by genetic predictions.
Collapse
Affiliation(s)
- Zi-Xuan Chen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bo Xu
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Ze-Ling Huang
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yu-Jiang Liu
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Yu-Wei Li
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Bin-Jie Lu
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| | - Jun Lin
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xian-Da Zhang
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
- Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiao-Feng Shen
- Department of Orthopedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhou H, He J, Liu R, Cheng J, Yuan Y, Mao W, Zhou J, He H, Liu Q, Tan W, Shuai C, Deng Y. Microenvironment-responsive metal-phenolic network release platform with ROS scavenging, anti-pyroptosis, and ECM regeneration for intervertebral disc degeneration. Bioact Mater 2024; 37:51-71. [PMID: 38515609 PMCID: PMC10954684 DOI: 10.1016/j.bioactmat.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) can be caused by aging, injury, and genetic factors. The pathological changes associated with IVDD include the excessive accumulation of reactive oxygen species (ROS), cellular pyroptosis, and extracellular matrix (ECM) degradation. There are currently no approved specific molecular therapies for IVDD. In this study, we developed a multifunctional and microenvironment-responsive metal-phenolic network release platform, termed TMP@Alg-PBA/PVA, which could treat (IL-1β)-induced IVDD. The metal-phenolic network (TA-Mn-PVP, TMP) released from this platform targeted mitochondria to efficiently scavenge ROS and reduce ECM degradation. Pyroptosis was suppressed through the inhibition of the IL-17/ERK signaling pathway. These findings demonstrate the versatility of the platform. And in a rat model of IVDD, TMP@Alg-PBA/PVA exhibited excellent therapeutic effects by reducing the progression of the disease. TMP@Alg-PBA/PVA, therefore, presents clinical potential for the treatment of IVDD.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jinpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Renfeng Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yuhao Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wanpu Mao
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Jun Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Honghui He
- Department of Joint Surgery and Sports Medicine, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Qianqi Liu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
6
|
Yang S, Jing S, Wang S, Jia F. From drugs to biomaterials: a review of emerging therapeutic strategies for intervertebral disc inflammation. Front Cell Infect Microbiol 2024; 14:1303645. [PMID: 38352058 PMCID: PMC10861683 DOI: 10.3389/fcimb.2024.1303645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Chronic low back pain (LBP) is an increasingly prevalent issue, especially among aging populations. A major underlying cause of LBP is intervertebral disc degeneration (IDD), often triggered by intervertebral disc (IVD) inflammation. Inflammation of the IVD is divided into Septic and Aseptic inflammation. Conservative therapy and surgical treatment often fail to address the root cause of IDD. Recent advances in the treatment of IVD infection and inflammation range from antibiotics and small-molecule drugs to cellular therapies, biological agents, and innovative biomaterials. This review sheds light on the complex mechanisms of IVD inflammation and physiological and biochemical processes of IDD. Furthermore, it provides an overview of recent research developments in this area, intending to identify novel therapeutic targets and guide future clinical strategies for effectively treating IVD-related conditions.
Collapse
Affiliation(s)
- Shuhan Yang
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shaoze Jing
- Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Shanxi Wang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Fajing Jia
- Department of General Practice, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|