1
|
Wang F, Barrero CA. Multi-Omics Analysis Identified Drug Repurposing Targets for Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:11106. [PMID: 39456887 PMCID: PMC11507528 DOI: 10.3390/ijms252011106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Despite recent advances in chronic obstructive pulmonary disease (COPD) research, few studies have identified the potential therapeutic targets systematically by integrating multiple-omics datasets. This project aimed to develop a systems biology pipeline to identify biologically relevant genes and potential therapeutic targets that could be exploited to discover novel COPD treatments via drug repurposing or de novo drug discovery. A computational method was implemented by integrating multi-omics COPD data from unpaired human samples of more than half a million subjects. The outcomes from genome, transcriptome, proteome, and metabolome COPD studies were included, followed by an in silico interactome and drug-target information analysis. The potential candidate genes were ranked by a distance-based network computational model. Ninety-two genes were identified as COPD signature genes based on their overall proximity to signature genes on all omics levels. They are genes encoding proteins involved in extracellular matrix structural constituent, collagen binding, protease binding, actin-binding proteins, and other functions. Among them, 70 signature genes were determined to be druggable targets. The in silico validation identified that the knockout or over-expression of SPP1, APOA1, CTSD, TIMP1, RXFP1, and SMAD3 genes may drive the cell transcriptomics to a status similar to or contrasting with COPD. While some genes identified in our pipeline have been previously associated with COPD pathology, others represent possible new targets for COPD therapy development. In conclusion, we have identified promising therapeutic targets for COPD. This hypothesis-generating pipeline was supported by unbiased information from available omics datasets and took into consideration disease relevance and development feasibility.
Collapse
Affiliation(s)
| | - Carlos A. Barrero
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA;
| |
Collapse
|
2
|
Jia Q, Ouyang Y, Yang Y, Yao S, Chen X, Hu Z. Osteopontin: A Novel Therapeutic Target for Respiratory Diseases. Lung 2024; 202:25-39. [PMID: 38060060 DOI: 10.1007/s00408-023-00665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein that is involved in physiological and pathological events. Emerging evidence suggests that OPN also plays a critical role in the pathogenesis of respiratory diseases. OPN can be produced and secreted by various cell types in lungs and overexpression of OPN has been found in acute lung injury/acute respiratory distress syndrome (ALI/ARDS), pulmonary hypertension (PH), pulmonary fibrosis diseases, lung cancer, lung infection, chronic obstructive pulmonary disease (COPD), and asthma. OPN exerts diverse effects on the inflammatory response, immune cell activation, fibrosis and tissue remodeling, and tumorigenesis of these respiratory diseases, and genetic and pharmacological moudulation of OPN exerts therapeutic effects in the treatment of respiratory diseases. In this review, we summarize the recent evidence of multifaceted roles and underlying mechanisms of OPN in these respiratory diseases, and targeting OPN appears to be a potential therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Qi Jia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yeling Ouyang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Yiyi Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China
| | - Zhiqiang Hu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation, Huazhong University of Science and Technology, Ministry of Education, Wuhan, 430022, China.
| |
Collapse
|
3
|
Lin H, Cheng S, Yang S, Zhang Q, Wang L, Li J, Zhang X, Liang L, Zhou X, Yang F, Song J, Cao X, Yang W, Weng Z. Isoforskolin modulates AQP4-SPP1-PIK3C3 related pathway for chronic obstructive pulmonary disease via cAMP signaling. Chin Med 2023; 18:128. [PMID: 37817209 PMCID: PMC10566078 DOI: 10.1186/s13020-023-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/01/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Cyclic adenosine monophosphate (cAMP) levels are directly activated by adenylate cyclase (AC) and play an anti-inflammatory role in chronic obstructive pulmonary disease (COPD). Previously, we have shown that isoforskolin (ISOF) can effectively activate AC1 and AC2 in vitro, improve pulmonary ventilation and reduce the inflammatory response in COPD model rats, supporting that ISOF may be a potential drug for the prevention and treatment of COPD, but the mechanism has not been explored in detail. METHODS The potential pharmacological mechanisms of ISOF against COPD were analyzed by network pharmacology and multi-omics based on pharmacodynamic study. To use specific agonists, inhibitors and/or SiRNA for gene regulation function studies, combined qPCR, WB were applied to detect changes in mRNA and protein expression of important targets PIK3C3, AKT, mTOR, SPP1 and AQP4 which related to ISOF effect on COPD. And the key inflammatory factors detected by ELISA. RESULTS Bioinformatics suggested that the anti-COPD pharmacological mechanism of ISOF was related to PI3K-AKT signaling pathway, and suggested target protein like PIK3C3, AQP4, SPP1, AKT, mTOR. Using the AQP4 inhibitor,or inhibiting SPP1 expression by siRNA-SPP1 could block the PIK3C3-AKT-mTOR pathway and ameliorate chronic inflammation. ISOF showed cAMP-promoting effect then suppressed AQP4 expression, together with decreased level of IL-1β, IL-6, and IL-8. CONCLUSIONS These findings demonstrate ISOF controlled the cAMP-regulated PIK3C3-AKT-mTOR pathway, thereby alleviating inflammatory development in COPD. The cAMP/AQP4/PIK3C3 axis also modulate Th17/Treg differentiation, revealed potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Haochang Lin
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Sha Cheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, Guizhou, China
- Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, Guizhou, China
| | - Songye Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Qian Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Lueli Wang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jiangya Li
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xinyue Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Liju Liang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Xiaoqian Zhou
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Furong Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China
| | - Jingfeng Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Xue Cao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, 650500, China.
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| | - Zhiying Weng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, No. 1168, Chunrong West Road, Yuhua Street, Chenggong New Town, Kunming, 650500, China.
| |
Collapse
|
4
|
Barkas GI, Kotsiou OS. The Role of Osteopontin in Respiratory Health and Disease. J Pers Med 2023; 13:1259. [PMID: 37623509 PMCID: PMC10455105 DOI: 10.3390/jpm13081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The biological functions of osteopontin (OPN) are diverse and specific to physiological and pathophysiological conditions implicated in inflammation, biomineralization, cardiovascular diseases, cellular viability, cancer, diabetes, and renal stone disease. We aimed to present the role of OPN in respiratory health and disease. OPN influences the immune system and is a chemo-attractive protein correlated with respiratory disease severity. There is evidence that OPN can advance the disease stage associated with its fibrotic, inflammatory, and immune functions. OPN contributes to eosinophilic airway inflammation. OPN can destroy the lung parenchyma through its neutrophil influx and fibrotic mechanisms, linking OPN to at least one of the two major chronic obstructive pulmonary disease phenotypes. Respiratory diseases that involve irreversible lung scarring, such as idiopathic pulmonary disease, are linked to OPN, with protein levels being overexpressed in individuals with severe or advanced stages of the disorders and considerably lower levels in those with less severe symptoms. OPN plays a significant role in lung cancer progression and metastasis. It is also implicated in the pathogenesis of pulmonary hypertension, coronavirus disease 2019, and granuloma generation.
Collapse
Affiliation(s)
- Georgios I. Barkas
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
| | - Ourania S. Kotsiou
- Department of Human Pathophysiology, Faculty of Nursing, University of Thessaly, 41500 Larissa, Greece
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, 41110 Larissa, Greece
| |
Collapse
|
5
|
Miao TW, Xiao W, Du LY, Mao B, Huang W, Chen XM, Li C, Wang Y, Fu JJ. High expression of SPP1 in patients with chronic obstructive pulmonary disease (COPD) is correlated with increased risk of lung cancer. FEBS Open Bio 2021; 11:1237-1249. [PMID: 33626243 PMCID: PMC8016137 DOI: 10.1002/2211-5463.13127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/07/2021] [Accepted: 02/22/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by persistent airway inflammation and fixed airflow obstruction. Patients with COPD have increased risk of lung cancer (LC), and the coexistence of both diseases is associated with poorer survival. However, the mechanisms predisposing patients with COPD to LC development and poor prognosis remain unclear. Gene expression profiles were downloaded from the Gene Expression Omnibus. Twenty‐two data sets were included (n = 876). We identified 133 DEGs and 145 DEGs in patients with COPD and LC compared with healthy controls, respectively. There were 1544 DEGs in patients with LC and coexisting COPD compared with COPD, and these DEGs are mainly involved in the cell cycle, DNA replication, p53 signalling and insulin signalling. The biological processes primarily associated with these DEGs are oxidation reduction and apoptosis. SPP1 was the only overlapping DEG that was up‐regulated in patients with COPD and/or LC, and this was validated by qPCR in an independent cohort. The area under the curve value for SPP1 was 0.893 (0.822–0.963) for the prediction of LC in patients with COPD. High expression of SPP1 in patients with LC was associated with shorter survival time. Up‐regulation of SPP1 may be associated with increased risk of LC in patients with COPD and therefore may have potential as a therapeutic target for LC in patients with COPD.
Collapse
Affiliation(s)
- Ti-Wei Miao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Xiao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Yi Du
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bing Mao
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Huang
- West China Biobanks, Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Xue-Mei Chen
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Cong Li
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Juan-Juan Fu
- Respiratory Group, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Jung AL, Møller Jørgensen M, Bæk R, Griss K, Han M, Auf Dem Brinke K, Timmesfeld N, Bertrams W, Greulich T, Koczulla R, Hippenstiel S, Suttorp N, Schmeck B. Surface Proteome of Plasma Extracellular Vesicles as Biomarkers for Pneumonia and Acute Exacerbation of Chronic Obstructive Pulmonary Disease. J Infect Dis 2019; 221:325-335. [DOI: 10.1093/infdis/jiz460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 01/09/2023] Open
Abstract
Abstract
Background
Community-acquired pneumonia (CAP) and acute exacerbation of chronic obstructive pulmonary disease (AECOPD) represent a major burden of disease and death and their differential diagnosis is critical. A potential source of relevant accessible biomarkers are blood-borne small extracellular vesicles (sEVs).
Methods
We performed an extracellular vesicle array to find proteins on plasma sEVs that are differentially expressed and possibly allow the differential diagnosis between CAP and AECOPD. Plasma samples were analyzed from 21 healthy controls, 24 patients with CAP, and 10 with AECOPD . The array contained 40 antibodies to capture sEVs, which were then visualized with a cocktail of biotin-conjugated CD9, CD63, and CD81 antibodies.
Results
We detected significant differences in the protein decoration of sEVs between healthy controls and patients with CAP or AECOPD. We found CD45 and CD28 to be the best discrimination markers between CAP and AECOPD in receiver operating characteristic analyses, with an area under the curve >0.92. Additional ensemble feature selection revealed the possibility to distinguish between CAP and AECOPD even if the patient with CAP had COPD, with a panel of CD45, CD28, CTLA4 (cytotoxic T-lymphocyte-associated protein 4), tumor necrosis factor–R-II, and CD16.
Conclusion
The discrimination of sEV-associated proteins is a minimally invasive method with potential to discriminate between CAP and AECOPD.
Collapse
Affiliation(s)
- Anna Lena Jung
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | | | - Rikke Bæk
- Department of Clinical Immunology, Aalborg University Hospital, Aalborg, Denmark
| | - Kathrin Griss
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Medizinische Klinik m.S. Infektiologie und Pneumologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Han
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Medizinische Klinik m.S. Hämatologie und Onkologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Kristina Auf Dem Brinke
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Nina Timmesfeld
- Abteilung für Medizinische Informatik, Biometrie und Epidemiologie, Ruhr-Universität Bochum, Bochum, Germany
| | - Wilhelm Bertrams
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Timm Greulich
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Rembert Koczulla
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
| | - Stefan Hippenstiel
- Medizinische Klinik m.S. Infektiologie und Pneumologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- Medizinische Klinik m.S. Infektiologie und Pneumologie, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Universities of Giessen and Marburg Lung Center, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Department of Medicine, Pulmonary and Critical Care Medicine, University Medical Center Giessen and Marburg, Philipps-University Marburg, Member of the German Center for Lung Research, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
7
|
Lamort AS, Giopanou I, Psallidas I, Stathopoulos GT. Osteopontin as a Link between Inflammation and Cancer: The Thorax in the Spotlight. Cells 2019; 8:cells8080815. [PMID: 31382483 PMCID: PMC6721491 DOI: 10.3390/cells8080815] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022] Open
Abstract
The glycoprotein osteopontin (OPN) possesses multiple functions in health and disease. To this end, osteopontin has beneficial roles in wound healing, bone homeostasis, and extracellular matrix (ECM) function. On the contrary, osteopontin can be deleterious for the human body during disease. Indeed, osteopontin is a cardinal mediator of tumor-associated inflammation and facilitates metastasis. The purpose of this review is to highlight the importance of osteopontin in malignant processes, focusing on lung and pleural tumors as examples.
Collapse
Affiliation(s)
- Anne-Sophie Lamort
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece
| | - Ioannis Psallidas
- Lungs for Living Research Centre, UCL Respiratory, University College London, London WC1E6BT, UK
| | - Georgios T Stathopoulos
- Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University of Munich and Helmholtz Center Munich, Member of the German Center for Lung Research, Max-Lebsche-Platz 31, 81377 Munich, Bavaria, Germany.
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Biomedical Sciences Research Center, 1 Asklepiou Str., University Campus, 26504 Rio, Achaia, Greece.
| |
Collapse
|
8
|
Chen YWR, Leung JM, Sin DD. A Systematic Review of Diagnostic Biomarkers of COPD Exacerbation. PLoS One 2016; 11:e0158843. [PMID: 27434033 PMCID: PMC4951145 DOI: 10.1371/journal.pone.0158843] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/22/2016] [Indexed: 01/03/2023] Open
Abstract
The aims of this systematic review were to determine which blood-based molecules have been evaluated as possible biomarkers to diagnose chronic obstructive pulmonary disease (COPD) exacerbations (AECOPD) and to ascertain the quality of these biomarker publications. Patients of interest were those that have been diagnosed with COPD. MEDLINE, EMBASE, and CINAHL databases were searched systematically through February 2015 for publications relating to AECOPD diagnostic biomarkers. We used a modified guideline for the REporting of tumor MARKer Studies (mREMARK) to assess study quality. Additional components of quality included the reporting of findings in a replication cohort and the use of receiver-operating characteristics area-under-the curve statistics in evaluating performance. 59 studies were included, in which the most studied biomarkers were C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). CRP showed consistent elevations in AECOPD compared to control subjects, while IL-6 and TNF-α had variable statistical significance and results. mREMARK scores ranged from 6 to 18 (median score of 13). 12 articles reported ROC analyses and only one study employed a replication cohort to confirm biomarker performance. Studies of AECOPD diagnostic biomarkers remain inconsistent in their reporting, with few studies employing ROC analyses and even fewer demonstrating replication in independent cohorts.
Collapse
Affiliation(s)
- Yu-Wei Roy Chen
- Centre for Heart Lung Innovation, Institute for Heart Lung Health at St. Paul’s Hospital & Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Janice M. Leung
- Centre for Heart Lung Innovation, Institute for Heart Lung Health at St. Paul’s Hospital & Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D. Sin
- Centre for Heart Lung Innovation, Institute for Heart Lung Health at St. Paul’s Hospital & Department of Medicine, Division of Respiratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Gela A, Bhongir RKV, Mori M, Keenan P, Mörgelin M, Erjefält JS, Herwald H, Egesten A, Kasetty G. Osteopontin That Is Elevated in the Airways during COPD Impairs the Antibacterial Activity of Common Innate Antibiotics. PLoS One 2016; 11:e0146192. [PMID: 26731746 PMCID: PMC4712133 DOI: 10.1371/journal.pone.0146192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 12/14/2015] [Indexed: 11/18/2022] Open
Abstract
Bacterial infections of the respiratory tract contribute to exacerbations and disease progression in chronic obstructive pulmonary disease (COPD). There is also an increased risk of invasive pneumococcal disease in COPD. The underlying mechanisms are not fully understood but include impaired mucociliary clearance and structural remodeling of the airways. In addition, antimicrobial proteins that are constitutively expressed or induced during inflammatory conditions are an important part of the airway innate host defense. In the present study, we show that osteopontin (OPN), a multifunctional glycoprotein that is highly upregulated in the airways of COPD patients co-localizes with several antimicrobial proteins expressed in the airways. In vitro, OPN bound lactoferrin, secretory leukocyte peptidase inhibitor (SLPI), midkine, human beta defensin-3 (hBD-3), and thymic stromal lymphopoietin (TSLP) but showed low or no affinity for lysozyme and LL-37. Binding of OPN impaired the antibacterial activity against the important bacterial pathogens Streptococcus pneumoniae and Pseudomonas aeruginosa. Interestingly, OPN reduced lysozyme-induced killing of S. pneumoniae, a finding that could be explained by binding of OPN to the bacterial surface, thereby shielding the bacteria. A fragment of OPN generated by elastase of P. aeruginosa retained some inhibitory effect. Some antimicrobial proteins have additional functions. However, the muramidase-activity of lysozyme and the protease inhibitory function of SLPI were not affected by OPN. Taken together, OPN can contribute to the impairment of innate host defense by interfering with the function of antimicrobial proteins, thus increasing the vulnerability to acquire infections during COPD.
Collapse
Affiliation(s)
- Anele Gela
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Ravi K. V. Bhongir
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Michiko Mori
- Airway Inflammation Unit, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - Paul Keenan
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Matthias Mörgelin
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Jonas S. Erjefält
- Airway Inflammation Unit, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - Heiko Herwald
- Infection Medicine, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - Gopinath Kasetty
- Respiratory Medicine & Allergology, Department of Clinical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
- * E-mail:
| |
Collapse
|
10
|
Niikura Y, Ishii T, Hosoki K, Nagase T, Yamashita N. Ovary-dependent emphysema augmentation and osteopontin induction in adult female mice. Biochem Biophys Res Commun 2015; 461:642-7. [PMID: 25912141 DOI: 10.1016/j.bbrc.2015.04.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
Biological differences between the sexes greatly impact the development and severity of pulmonary disorders such as emphysema. Recent studies have demonstrated crucial roles for osteopontin (OPN, also known as SPP1) in lung inflammation and alveolar destruction in human and experimental emphysema, but the impact of gender on OPN action remains unknown. Here, we report ovary-dependent induction of Opn mRNA with augmentation of experimental emphysema in adult female mice. Both male and female mice developed emphysematous lungs following intra-tracheal administration of porcine pancreatic elastase; however, compared with male mice, female mice developed more severe injury-related inflammation and pathologic alterations of the lungs. Notably, we observed female-specific induction of the Opn gene upon lung injury. Ovariectomy blocked this induction, with attenuation of lung inflammation and alveolar destruction, demonstrating the essential role of ovaries in injury-related Opn induction and augmentation of emphysema in adult female mice. Lastly, pre-treatment of adult female mice with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, which blocks ATP-mediated wound response, suppressed Opn mRNA induction upon lung injury, resulting in attenuation of enhanced lung inflammation. Together, our findings define a novel, ovary-dependent mechanism underlying gender-specific augmentation of emphysema through transcriptional control of the Opn gene.
Collapse
Affiliation(s)
- Yuichi Niikura
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Takashi Ishii
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan; Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Hosoki
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan; Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takahide Nagase
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Naomi Yamashita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|