1
|
Eyster HN, Chan KMA, Fletcher ME, Beckage B. Space-for-time substitutions exaggerate urban bird-habitat ecological relationships. J Anim Ecol 2024; 93:1854-1867. [PMID: 39506196 PMCID: PMC11615266 DOI: 10.1111/1365-2656.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 09/12/2024] [Indexed: 11/08/2024]
Abstract
North American bird abundance has declined by 29% over the last 50 years. These continental population dynamics interact with local landscape changes to affect local bird diversity. Mitigating local declines in cities is particularly significant because (a) such declines greatly impact human-bird relationships since most people live in cities and (b) cities provide levers to create bird-friendly habitat, such as managing yards and gardens, street trees, and urban parks. Yet, the potential for cities to modify habitats to mitigate broader bird declines remains unclear. Studies have been stymied by the difficulty of assembling mutidecadal habitat-bird population datasets. Instead, studies have substituted space for time (e.g. used habitat associations across space at one time point to project future species abundance due to changing land use), but this method may fail amidst nonstationary environments of the Anthropocene. Here, we test the validity of space-for-time substitutions for explaining changes in bird abundance in a North American city over the past two decades by examining the degree to which these changes are explainable by changes in local landcover at multiple spatial scales. Specifically, we use longitudinal urban bird surveys of Metro Vancouver, BC, Canada from 1997 and 2020; deep learning models of remote sensing data to classify contemporaneous landcover; out-of-sample prediction and boosted regression trees to identify multiple spatial scales of landcover that best explained bird abundance (i.e. optimal scale of effect for each species by each habitat); and Bayesian multispecies abundance models in Stan to determine relationships between changes in landcover and bird abundance. We found that total bird abundance declined by 26% over the last two decades. Landcover measured at both 50 m and optimal scales explained spatial variation in bird abundance, but only landcover at the optimal scale explained temporal changes, and only partially. These results suggest that space-for-time substitutions overemphasize habitat-bird ecological relationships, urban habitats only partially determine bird abundance, and measuring habitat at the appropriate scale is important for capturing the most relevant changes in landscapes.
Collapse
Affiliation(s)
- Harold N. Eyster
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVermontUSA
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
- Institute for Resources, Environment & SustainabilityUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Present address:
The Nature Conservancy in ColoradoBoulderColoradoUSA
| | - Kai M. A. Chan
- Institute for Resources, Environment & SustainabilityUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Biodiversity Research CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Morgan E. Fletcher
- Rubenstein School of Environment and Natural ResourcesUniversity of VermontBurlingtonVermontUSA
| | - Brian Beckage
- Gund Institute for EnvironmentUniversity of VermontBurlingtonVermontUSA
- Department of Plant BiologyUniversity of VermontBurlingtonVermontUSA
| |
Collapse
|
2
|
Ashraf U, Morelli TL, Smith AB, Hernandez RR. Climate-Smart Siting for renewable energy expansion. iScience 2024; 27:110666. [PMID: 39351196 PMCID: PMC11439850 DOI: 10.1016/j.isci.2024.110666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024] Open
Abstract
A massive expansion of renewable energy (RE) is underway to meet the world's climate goals. Although RE serves to reduce threats from climate change, it can also pose threats to species whose current and future ranges intersect with RE installations. Here, we propose a "Climate-Smart Siting" framework for addressing potential conflicts between RE expansion and biodiversity conservation. The framework engenders authentic consultation with affected and disadvantaged communities throughout and uses overlay and optimization routines to identify focal areas now and in the future where RE development poses promise and peril as species' ranges shift in response to climate change. We use this framework to demonstrate methods, identify decision outcomes, and discuss market-based levers for aligning RE expansion with the United Nations Global Biodiversity Framework now and as climate change progresses. In the face of the climate crisis, a Climate-Smart Siting strategy could help create solutions without causing further harm to biodiversity and human communities..
Collapse
Affiliation(s)
- Uzma Ashraf
- Wild Energy Center, Energy and Efficiency Institute, University of California, Davis, Davis, CA 95616, USA
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616, USA
| | - Toni Lyn Morelli
- US Geological Survey, Northeast Climate Adaptation Science Center, Amherst, MA 24521, USA
| | - Adam B. Smith
- Center for Conservation & Sustainable Development, Missouri Botanical Garden, Saint Louis, MI 48880, USA
| | - Rebecca R. Hernandez
- Wild Energy Center, Energy and Efficiency Institute, University of California, Davis, Davis, CA 95616, USA
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Piper WH, Glines MR, Rose KC. Climate change-associated declines in water clarity impair feeding by common loons. Ecology 2024; 105:e4291. [PMID: 38556944 DOI: 10.1002/ecy.4291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Climate change has myriad impacts on ecosystems, but the mechanisms by which it affects individual species can be difficult to pinpoint. One strategy to discover such mechanisms is to identify a specific ecological factor related to survival or reproduction and determine how that factor is affected by climate. Here we used Landsat imagery to calculate water clarity for 127 lakes in northern Wisconsin from 1995 to 2021 and thus investigate the effect of clarity on the body condition of an aquatic visual predator, the common loon (Gavia immer). In addition, we examined rainfall and temperature as potential predictors of water clarity. Body mass tracked July water clarity strongly in loon chicks, which grow chiefly in that month, but weakly in adult males and females. Long-term mean water clarity was negatively related to chick mass but positively related to adult male mass, suggesting that loons foraging in generally clear lakes enjoy good foraging conditions in the long run but might be sensitive to perturbations in clarity during chick-rearing. Finally, chick mass was positively related to the density of docks, perhaps because angling removes large fishes and thus boosts the abundance of the small fishes on which chicks depend. Water clarity itself declined strongly from 1995 to 2021, was negatively related to July rainfall, and was positively related to July air temperature. Our findings identified both long-term and short-term water clarity as strong predictors of loon foraging efficiency, and suggest that climate change, through water clarity, impacts freshwater ecosystems profoundly. Moreover, our results identified the recent decrease in water clarity as a likely cause of population decline in common loons.
Collapse
Affiliation(s)
- Walter H Piper
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Max R Glines
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York, USA
| |
Collapse
|
4
|
Hintsanen L, Marjakangas EL, Santangeli A, Johnston A, Lehikoinen A. Temperature niche composition change inside and outside protected areas under climate warming. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14134. [PMID: 37259595 DOI: 10.1111/cobi.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 06/02/2023]
Abstract
Conservation of biodiversity relies heavily on protected areas but their role and effectiveness under a warming climate is still debated. We estimated the climate-driven changes in the temperature niche compositions of bird communities inside and outside protected areas in southern Canada. We hypothesized that communities inside protected areas include a higher proportion of cold-dwelling species than communities outside protected areas. We also hypothesized that communities shift to warm-dwelling species more slowly inside protected areas than outside. To study community changes, we used large-scale and long-term (1997-2019) data from the Breeding Bird Survey of Canada. To describe the temperature niche compositions of bird communities, we calculated the community temperature index (CTI) annually for each community inside and outside protected areas. Generally, warm-dwelling species dominated communities with high CTI values. We modeled temporal changes in CTI as a function of protection status with linear mixed-effect models. We also determined which species contributed most to the temporal changes in CTI with a jackknife approach. As anticipated, CTI was lower inside protected areas than outside. However, contrary to our expectation, CTI increased faster over time inside than outside protected areas and warm-dwelling species contributed most to CTI change inside protected areas. These results highlight the ubiquitous impacts of climate warming. Currently, protected areas can aid cold-dwelling species by providing habitat, but as the climate warms, the communities' temperature compositions inside protected areas quickly begin to resemble those outside protected areas, suggesting that protected areas delay the impacts of climate warming on cold-dwelling species.
Collapse
Affiliation(s)
- Leena Hintsanen
- The Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | | | - Andrea Santangeli
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Alison Johnston
- Centre for Research into Ecological and Environmental Modelling, University of St Andrews, St Andrews, UK
| | - Aleksi Lehikoinen
- The Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Askeyev O, Askeyev A, Askeyev I, Sparks T. Significantly Earlier Spring Migration in Most Bird Species at the Eastern Limit of Europe. Animals (Basel) 2023; 13:3031. [PMID: 37835637 PMCID: PMC10571820 DOI: 10.3390/ani13193031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The first arrival dates of 31 species of migrant birds in the Tatarstan Republic of Russia were monitored for the 34-year period from 1989-2022. Trends in first arrival date were evaluated using regression against the year value. Patterns in arrival data with respect to species traits (habitat, migration distance, body weight, etc.) were evaluated using redundancy analysis. Relationships between first arrival dates and Tatarstan temperatures were also evaluated using regression methods of first-arrival date on monthly mean temperatures. Almost all (28 of 31) species revealed a significantly earlier migration arrival date; however, associations between arrival patterns and species traits were equivocal. Warmer temperatures were significantly associated with earlier arrival in 26 of the 31 species, but the relationship was insufficient to explain the average 11-day advance in species. For these species and in this location only the timing and location of arrival are well recorded; the exact wintering areas and migration routes, and the timing of these phases are less well understood. When these become better known, an investigation of the influence of environmental conditions (including temperature) on departure timing and passage timing and speed is recommended.
Collapse
Affiliation(s)
- Oleg Askeyev
- Biomonitoring Laboratory, Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan 420087, Russia; (O.A.); (A.A.); (I.A.)
| | - Arthur Askeyev
- Biomonitoring Laboratory, Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan 420087, Russia; (O.A.); (A.A.); (I.A.)
| | - Igor Askeyev
- Biomonitoring Laboratory, Institute of Problems in Ecology and Mineral Wealth, Tatarstan Academy of Sciences, Kazan 420087, Russia; (O.A.); (A.A.); (I.A.)
| | - Tim Sparks
- Department of Zoology, Poznań University of Life Sciences, 60-625 Poznań, Poland
- Museum of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
6
|
Doser JW, Finley AO, Banerjee S. Joint species distribution models with imperfect detection for high-dimensional spatial data. Ecology 2023; 104:e4137. [PMID: 37424187 DOI: 10.1002/ecy.4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/26/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
Determining the spatial distributions of species and communities is a key task in ecology and conservation efforts. Joint species distribution models are a fundamental tool in community ecology that use multi-species detection-nondetection data to estimate species distributions and biodiversity metrics. The analysis of such data is complicated by residual correlations between species, imperfect detection, and spatial autocorrelation. While many methods exist to accommodate each of these complexities, there are few examples in the literature that address and explore all three complexities simultaneously. Here we developed a spatial factor multi-species occupancy model to explicitly account for species correlations, imperfect detection, and spatial autocorrelation. The proposed model uses a spatial factor dimension reduction approach and Nearest Neighbor Gaussian Processes to ensure computational efficiency for data sets with both a large number of species (e.g., >100) and spatial locations (e.g., 100,000). We compared the proposed model performance to five alternative models, each addressing a subset of the three complexities. We implemented the proposed and alternative models in the spOccupancy software, designed to facilitate application via an accessible, well documented, and open-source R package. Using simulations, we found that ignoring the three complexities when present leads to inferior model predictive performance, and the impacts of failing to account for one or more complexities will depend on the objectives of a given study. Using a case study on 98 bird species across the continental US, the spatial factor multi-species occupancy model had the highest predictive performance among the alternative models. Our proposed framework, together with its implementation in spOccupancy, serves as a user-friendly tool to understand spatial variation in species distributions and biodiversity while addressing common complexities in multi-species detection-nondetection data.
Collapse
Affiliation(s)
- Jeffrey W Doser
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Andrew O Finley
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Department of Forestry, Michigan State University, East Lansing, Michigan, USA
| | - Sudipto Banerjee
- Department of Biostatistics, University of California, Los Angeles, California, USA
| |
Collapse
|
7
|
Schofield LN, Siegel RB, Loffland HL. Modeling climate‐driven range shifts in populations of two bird species limited by habitat independent of climate. Ecosphere 2023. [DOI: 10.1002/ecs2.4408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
|
8
|
Alvarado AH, Bossu CM, Harrigan RJ, Bay RA, Nelson ARP, Smith TB, Ruegg KC. Genotype-environment associations across spatial scales reveal the importance of putative adaptive genetic variation in divergence. Evol Appl 2022; 15:1390-1407. [PMID: 36187181 PMCID: PMC9488676 DOI: 10.1111/eva.13444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 06/04/2022] [Indexed: 12/01/2022] Open
Abstract
Identifying areas of high evolutionary potential is a judicious strategy for developing conservation priorities in the face of environmental change. For wide-ranging species occupying heterogeneous environments, the evolutionary forces that shape distinct populations can vary spatially. Here, we investigate patterns of genomic variation and genotype-environment associations in the hermit thrush (Catharus guttatus), a North American songbird, at broad (across the breeding range) and narrow spatial scales (at a hybrid zone). We begin by building a genoscape or map of genetic variation across the breeding range and find five distinct genetic clusters within the species, with the greatest variation occurring in the western portion of the range. Genotype-environment association analyses indicate higher allelic turnover in the west than in the east, with measures of temperature surfacing as key predictors of putative adaptive genomic variation rangewide. Since broad patterns detected across a species' range represent the aggregate of many locally adapted populations, we investigate whether our broadscale analysis is consistent with a finer scale analysis. We find that top rangewide temperature-associated loci vary in their clinal patterns (e.g., steep clines vs. fixed allele frequencies) across a hybrid zone in British Columbia, suggesting that the environmental predictors and the associated candidate loci identified in the rangewide analysis are of variable importance in this particular region. However, two candidate loci exhibit strong concordance with the temperature gradient in British Columbia, suggesting a potential role for temperature-related barriers to gene flow and/or temperature-driven ecological selection in maintaining putative local adaptation. This study demonstrates how patterns identified at the broad (macrogeographic) scale can be validated by investigating genotype-environment correlations at the local (microgeographic) scale. Furthermore, our results highlight the importance of considering the spatial distribution of putative adaptive variation when assessing population-level sensitivity to climate change and other stressors.
Collapse
Affiliation(s)
- Allison H. Alvarado
- Biology DepartmentCalifornia State University Channel IslandsCamarilloCaliforniaUSA
| | - Christen M. Bossu
- Center for Tropical Research, Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| | - Ryan J. Harrigan
- Center for Tropical Research, Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCaliforniaUSA
| | - Rachael A. Bay
- Department of Evolution and EcologyUniversity of California, DavisDavisCaliforniaUSA
| | | | - Thomas B. Smith
- Center for Tropical Research, Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Ecology and Evolutionary BiologyUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Kristen C. Ruegg
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
9
|
Rahman Q, Nadeem MS, Umair M, Altaf M, Ni J, Abbasi AM, Jameel MA, Pieroni A, Hamed MH, Ashraf S, Sadaf T. Medicinal waterbirds in the traditional healthcare system: an assessment of biodiversity-cultural linkages in Eastern Khyber Pakhtunkhwa, Pakistan. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2022; 18:57. [PMID: 36030230 PMCID: PMC9420292 DOI: 10.1186/s13002-022-00554-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 08/16/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Eastern Khyber Pakhtunkhwa is home to a vast range of medicinal and edible waterbird species due to its diverse geographical environment. Waterbird species have been used for various ailments and cultural practices since ancient times, while ethno-pharmacological applications and cultural uses of waterbird species in this area have seldom been documented. This study is the first ethnomedicinal and cultural assessment of waterbird species, and the first compilation and listing of all known data on these species in Eastern Khyber Pakhtunkhwa, Pakistan. METHODS Interviews and questionnaires were used to collect data from native respondents (N = 100). To analyze the data, principal component analysis (PCA), relative frequency of citation (RFC), fidelity level (FL%), relative popularity level (RPL), rank order priority, and similarity index were used. RESULTS In total, 64 waterbird species were utilized in cultural practices, of which 40 species are used to cure different infectious and chronic diseases such as cold, cough, flu, fever, respiratory disorders, asthma, TB, gastric ulcers, kidney stones, male impotency, obesity, paralysis, piles, cancer, arthritis, body pain, and weakness. PCA showed significant differences in the use of waterbird species among the local inhabitants of the study area, separated along the axis-2 (p < 0.05). The FL% of waterbird species varied from 12 to 100%. 100% FL was analyzed for four waterbird species, i.e., Charadrius mongolus (cold), Gallicrex cinerea (asthma), Anas platyrhynchos (cancer), and Esacus recurvirostris (body weakness). In this study, Mallard (Anas platyrhynchos) was the most popular species used in the healthcare system of Eastern Khyber Pakhtunkhwa, with high RFC (4.06), FL% (100), and RPL (1.0) values. CONCLUSION We concluded that waterbird species are more used for medicine and food purposes in the study area. However, in vitro/in vivo assessment of biochemical activities of waterbird species with a maximum FL% might be significant to produce novel drugs. Recent research shows important ethno-ornithological information about native people and their links with waterbird species, which might be helpful for the sustainable use of waterbird diversity in the research area.
Collapse
Affiliation(s)
- Qaisar Rahman
- Department of Zoology, Wildlife and Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Sajid Nadeem
- Department of Zoology, Wildlife and Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Muhammad Umair
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Muhammad Altaf
- Department of Forestry, Range and Wildlife Management, The Islamia University of Bahawalpur, 63100, Bahawalpur, Pakistan.
| | - Jian Ni
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Arshad Mahmood Abbasi
- Department of Environment Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Azhar Jameel
- Department of Zoology, Wildlife and Fisheries, PMAS-Arid Agriculture University, Rawalpindi, 46300, Pakistan
| | - Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II 9, 12042, Pollenzo, Italy
- Department of Medical Analysis, Tishk International University, 4401, Erbil, Iraq
| | - Muhammad Haroon Hamed
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sana Ashraf
- Department of Zoology, University of Lahore, Sargodha, 40100, Pakistan
| | - Tasnim Sadaf
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, 54000, Lahore, Pakistan
| |
Collapse
|
10
|
Zhu G, Papeş M, Armsworth PR, Giam X. Climate change vulnerability of terrestrial vertebrates in a major refuge and dispersal corridor in North America. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13528] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Gengping Zhu
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Monica Papeş
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Paul R. Armsworth
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| | - Xingli Giam
- National Institute for Mathematical and Biological Synthesis University of Tennessee Knoxville Tennessee USA
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee USA
| |
Collapse
|
11
|
Saunders SP, Meehan TD, Michel NL, Bateman BL, DeLuca W, Deppe JL, Grand J, LeBaron GS, Taylor L, Westerkam H, Wu JX, Wilsey CB. Unraveling a century of global change impacts on winter bird distributions in the eastern United States. GLOBAL CHANGE BIOLOGY 2022; 28:2221-2235. [PMID: 35060249 DOI: 10.1111/gcb.16063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 05/27/2023]
Abstract
One of the most pressing questions in ecology and conservation centers on disentangling the relative impacts of concurrent global change drivers, climate and land-use/land-cover (LULC), on biodiversity. Yet studies that evaluate the effects of both drivers on species' winter distributions remain scarce, hampering our ability to develop full-annual-cycle conservation strategies. Additionally, understanding how groups of species differentially respond to climate versus LULC change is vital for efforts to enhance bird community resilience to future environmental change. We analyzed long-term changes in winter occurrence of 89 species across nine bird groups over a 90-year period within the eastern United States using Audubon Christmas Bird Count (CBC) data. We estimated variation in occurrence probability of each group as a function of spatial and temporal variation in winter climate (minimum temperature, cumulative precipitation) and LULC (proportion of group-specific and anthropogenic habitats within CBC circle). We reveal that spatial variation in bird occurrence probability was consistently explained by climate across all nine species groups. Conversely, LULC change explained more than twice the temporal variation (i.e., decadal changes) in bird occurrence probability than climate change on average across groups. This pattern was largely driven by habitat-constrained species (e.g., grassland birds, waterbirds), whereas decadal changes in occurrence probabilities of habitat-unconstrained species (e.g., forest passerines, mixed habitat birds) were equally explained by both climate and LULC changes over the last century. We conclude that climate has generally governed the winter occurrence of avifauna in space and time, while LULC change has played a pivotal role in driving distributional dynamics of species with limited and declining habitat availability. Effective land management will be critical for improving species' resilience to climate change, especially during a season of relative resource scarcity and critical energetic trade-offs.
Collapse
Affiliation(s)
- Sarah P Saunders
- Science Division, National Audubon Society, New York, New York, USA
| | - Timothy D Meehan
- Science Division, National Audubon Society, New York, New York, USA
| | - Nicole L Michel
- Science Division, National Audubon Society, New York, New York, USA
| | - Brooke L Bateman
- Science Division, National Audubon Society, New York, New York, USA
| | - William DeLuca
- Science Division, National Audubon Society, New York, New York, USA
| | - Jill L Deppe
- Science Division, National Audubon Society, New York, New York, USA
| | - Joanna Grand
- Science Division, National Audubon Society, New York, New York, USA
| | | | - Lotem Taylor
- Science Division, National Audubon Society, New York, New York, USA
| | - Henrik Westerkam
- Science Division, National Audubon Society, New York, New York, USA
| | - Joanna X Wu
- Science Division, National Audubon Society, New York, New York, USA
| | - Chad B Wilsey
- Science Division, National Audubon Society, New York, New York, USA
| |
Collapse
|
12
|
Baldwin JW, Garcia-Porta J, Botero CA. Phenotypic responses to climate change are significantly dampened in big-brained birds. Ecol Lett 2022; 25:939-947. [PMID: 35142006 DOI: 10.1111/ele.13971] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 01/29/2023]
Abstract
Anthropogenic climate change is rapidly altering local environments and threatening biodiversity throughout the world. Although many wildlife responses to this phenomenon appear largely idiosyncratic, a wealth of basic research on this topic is enabling the identification of general patterns across taxa. Here, we expand those efforts by investigating how avian responses to climate change are affected by the ability to cope with ecological variation through behavioural flexibility (as measured by relative brain size). After accounting for the effects of phylogenetic uncertainty and interspecific variation in adaptive potential, we confirm that although climate warming is generally correlated with major body size reductions in North American migrants, these responses are significantly weaker in species with larger relative brain sizes. Our findings suggest that cognition can play an important role in organismal responses to global change by actively buffering individuals from the environmental effects of warming temperatures.
Collapse
Affiliation(s)
- Justin W Baldwin
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Joan Garcia-Porta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Carlos A Botero
- Department of Biology, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Gahbauer MA, Parker SR, Wu JX, Harpur C, Bateman BL, Whitaker DM, Tate DP, Taylor L, Lepage D. Projected changes in bird assemblages due to climate change in a Canadian system of protected areas. PLoS One 2022; 17:e0262116. [PMID: 35061743 PMCID: PMC8782523 DOI: 10.1371/journal.pone.0262116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/17/2021] [Indexed: 12/05/2022] Open
Abstract
National parks often serve as a cornerstone for a country's species and ecosystem conservation efforts. However, despite the protection these sites afford, climate change is expected to drive a substantial change in their bird assemblages. We used species distribution models to predict the change in environmental suitability (i.e., how well environmental conditions explain the presence of a species) of 49 Canadian national parks during summer and winter for 434 bird species under a 2°C warming scenario, anticipated to occur in Canada around the mid-21st century. We compared these to existing species distributions in the 2010s, and classified suitability projections for each species at each park as potential extirpation, worsening, stable, improving, or potential colonisation. Across all parks, and both seasons, 70% of the projections indicate change, including a 25% turnover in summer assemblages and 30% turnover in winter assemblages. The majority of parks are projected to have increases in species richness and functional traits in winter, compared to a mix of increases and decreases in both in summer. However, some changes are expected to vary by region, such as Arctic region parks being likely to experience the most potential colonisation, while some of the Mixedwood Plains and Atlantic Maritime region parks may experience the greatest turnover and potential extirpation in summer if management actions are not taken to mitigate some of these losses. Although uncertainty exists around the precise rate and impacts of climate change, our results indicate that conservation practices that assume stationarity of environmental conditions will become untenable. We propose general guidance to help managers adapt their conservation actions to consider the potentially substantive changes in bird assemblages that are projected, including managing for persistence and change.
Collapse
Affiliation(s)
- Marcel A. Gahbauer
- Canadian Wildlife Service, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | | | - Joanna X. Wu
- National Audubon Society, New York City, New York, United States of America
| | | | - Brooke L. Bateman
- National Audubon Society, New York City, New York, United States of America
| | | | | | - Lotem Taylor
- National Audubon Society, New York City, New York, United States of America
| | | |
Collapse
|
14
|
Groff TC, Lorenz TJ, Iezhova TA, Valkiūnas G, Sehgal RNM. Description and molecular characterization of novel Leucocytozoon parasite (Apicomplexa: Haemosporida: Leucocytozoidae), Leucocytozoon polynuclearis n. sp. found in North American woodpeckers. Syst Parasitol 2022; 99:103-114. [PMID: 35038107 DOI: 10.1007/s11230-021-10019-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/15/2021] [Indexed: 11/28/2022]
Abstract
We describe Leucocytozoon polynuclearis n. sp. (Haemosporida: Leucocytozoidae) from two North American woodpeckers, the northern flicker (Colaptes auratus Linnaeus) and white-headed woodpecker (Dryobates albolarvatus Boie, 1826), based on the morphology of its blood stages and portions of the mitochondrial cytochrome b gene. The most distinctive features of Leucocytozoon polynuclearis n. sp. development are the triangular-shaped host cell nuclei and position of host cell nuclei above gametocytes. This parasite inhabits thrombocytes. Leucocytozoon squamatus Nandi, 1986, the only other Leucocytozoon species detected from Picidae birds, lacks features that are commonly found with L. polynuclearis n. sp. infections. Phylogenetic analysis identified DNA lineages associated with L. polynuclearis n. sp. and showed that this parasite is more closely related to other North American Leucocytozoon species than to L. squamatus, whose initial description was from infected Old World Picidae species. Although there are reports of L. squamatus in North American Picidae species, these detections were based only on microscopic examinations, remain genetically non-characterized, and might be misidentifications with regards to L. polynuclearis n. sp. Available parasite distribution data indicate that L. polynuclearis n. sp. infects Picidae species throughout North America and L. squamatus distribution probably is restricted to Old World Piciformes birds.
Collapse
Affiliation(s)
- Tierra C Groff
- Biology Department, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94312, USA
| | - Teresa J Lorenz
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 3625 93rd Ave SW, Olympia, WA, 98512, USA
| | - Tatjana A Iezhova
- Institute of Ecology, Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania
| | - Gediminas Valkiūnas
- Institute of Ecology, Nature Research Centre, Akademijos Str. 2, 08412, Vilnius, Lithuania
| | - Ravinder N M Sehgal
- Biology Department, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94312, USA.
| |
Collapse
|
15
|
Johnson EI. Short-Term Effects of Two Hurricanes on Bird Populations in Southwestern Louisiana. SOUTHEAST NAT 2021. [DOI: 10.1656/058.020.0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Erik I. Johnson
- 5615 Corporate Boulevard, Suite 600B, National Audubon Society, Baton Rouge, LA 70808;
| |
Collapse
|
16
|
Micheletti T, Stewart FEC, Cumming SG, Haché S, Stralberg D, Tremblay JA, Barros C, Eddy IMS, Chubaty AM, Leblond M, Pankratz RF, Mahon CL, Van Wilgenburg SL, Bayne EM, Schmiegelow F, McIntire EJB. Assessing Pathways of Climate Change Effects in SpaDES: An Application to Boreal Landbirds of Northwest Territories Canada. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.679673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Distributions of landbirds in Canadian northern forests are expected to be affected by climate change, but it remains unclear which pathways are responsible for projected climate effects. Determining whether climate change acts indirectly through changing fire regimes and/or vegetation dynamics, or directly through changes in climatic suitability may allow land managers to address negative trajectories via forest management. We used SpaDES, a novel toolkit built in R that facilitates the implementation of simulation models from different areas of knowledge to develop a simulation experiment for a study area comprising 50 million ha in the Northwest Territories, Canada. Our factorial experiment was designed to contrast climate effects pathways on 64 landbird species using climate-sensitive and non-climate sensitive models for tree growth and mortality, wildfire, and landbirds. Climate-change effects were predicted to increase suitable habitat for 73% of species, resulting in average net gain of 7.49 million ha across species. We observed higher species turnover in the northeastern, south-central (species loss), and western regions (species gain). Importantly, we found that most of the predicted differences in net area of occupancy across models were attributed to direct climate effects rather than simulated vegetation change, despite a similar relative importance of vegetation and climate variables in landbird models. Even with close to a doubling of annual area burned by 2100, and a 600 kg/ha increase in aboveground tree biomass predicted in this region, differences in landbird net occupancy across models attributed to climate-driven forest growth were very small, likely resulting from differences in the pace of vegetation and climate changes, or vegetation lags. The effect of vegetation lags (i.e., differences from climatic equilibrium) varied across species, resulting in a wide range of changes in landbird distribution, and consequently predicted occupancy, due to climate effects. These findings suggest that hybrid approaches using statistical models and landscape simulation tools could improve wildlife forecasts when future uncoupling of vegetation and climate is anticipated. This study lays some of the methodological groundwork for ecological adaptive management using the new platform SpaDES, which allows for iterative forecasting, mixing of modeling paradigms, and tightening connections between data, parameterization, and simulation.
Collapse
|
17
|
Saunders SP, Piper W, Farr MT, Bateman BL, Michel NL, Westerkam H, Wilsey CB. Interrelated impacts of climate and land-use change on a widespread waterbird. J Anim Ecol 2021; 90:1165-1176. [PMID: 33754380 DOI: 10.1111/1365-2656.13444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/02/2021] [Indexed: 11/27/2022]
Abstract
Together climate and land-use change play a crucial role in determining species distribution and abundance, but measuring the simultaneous impacts of these processes on current and future population trajectories is challenging due to time lags, interactive effects and data limitations. Most approaches that relate multiple global change drivers to population changes have been based on occurrence or count data alone. We leveraged three long-term (1995-2019) datasets to develop a coupled integrated population model-Bayesian population viability analysis (IPM-BPVA) to project future survival and reproductive success for common loons Gavia immer in northern Wisconsin, USA, by explicitly linking vital rates to changes in climate and land use. The winter North Atlantic Oscillation (NAO), a broad-scale climate index, immediately preceding the breeding season and annual changes in developed land cover within breeding areas both had strongly negative influences on adult survival. Local summer rainfall was negatively related to fecundity, though this relationship was mediated by a lagged interaction with the winter NAO, suggesting a compensatory population-level response to climate variability. We compared population viability under 12 future scenarios of annual land-use change, precipitation and NAO conditions. Under all scenarios, the loon population was expected to decline, yet the steepest declines were projected under positive NAO trends, as anticipated with ongoing climate change. Thus, loons breeding in the northern United States are likely to remain affected by climatic processes occurring thousands of miles away in the North Atlantic during the non-breeding period of the annual cycle. Our results reveal that climate and land-use changes are differentially contributing to loon population declines along the southern edge of their breeding range and will continue to do so despite natural compensatory responses. We also demonstrate that concurrent analysis of multiple data types facilitates deeper understanding of the ecological implications of anthropogenic-induced change occurring at multiple spatial scales. Our modelling approach can be used to project demographic responses of populations to varying environmental conditions while accounting for multiple sources of uncertainty, an increasingly pressing need in the face of unprecedented global change.
Collapse
Affiliation(s)
| | - Walter Piper
- Schmid College of Science & Technology, Chapman University, Orange, CA, USA
| | - Matthew T Farr
- Department of Integrative Biology, Ecology, Evolutionary Biology, and Behavior Program, Michigan State University, East Lansing, MI, USA
| | | | | | | | | |
Collapse
|
18
|
Bateman BL, Taylor L, Wilsey C, Wu J, LeBaron GS, Langham G. Risk to North American birds from climate change‐related threats. CONSERVATION SCIENCE AND PRACTICE 2020. [DOI: 10.1111/csp2.243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
| | - Lotem Taylor
- Science DivisionNational Audubon Society New York New York USA
| | - Chad Wilsey
- Science DivisionNational Audubon Society New York New York USA
| | - Joanna Wu
- Science DivisionNational Audubon Society New York New York USA
| | | | - Gary Langham
- American Association of Geographers Washington District of Columbia USA
| |
Collapse
|