1
|
Brickson L, Zhang L, Vollrath F, Douglas-Hamilton I, Titus AJ. Elephants and algorithms: a review of the current and future role of AI in elephant monitoring. J R Soc Interface 2023; 20:20230367. [PMID: 37963556 PMCID: PMC10645515 DOI: 10.1098/rsif.2023.0367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Artificial intelligence (AI) and machine learning (ML) present revolutionary opportunities to enhance our understanding of animal behaviour and conservation strategies. Using elephants, a crucial species in Africa and Asia's protected areas, as our focal point, we delve into the role of AI and ML in their conservation. Given the increasing amounts of data gathered from a variety of sensors like cameras, microphones, geophones, drones and satellites, the challenge lies in managing and interpreting this vast data. New AI and ML techniques offer solutions to streamline this process, helping us extract vital information that might otherwise be overlooked. This paper focuses on the different AI-driven monitoring methods and their potential for improving elephant conservation. Collaborative efforts between AI experts and ecological researchers are essential in leveraging these innovative technologies for enhanced wildlife conservation, setting a precedent for numerous other species.
Collapse
Affiliation(s)
| | | | - Fritz Vollrath
- Save the Elephants, Nairobi, Kenya
- Department of Biology, University of Oxford, Oxford, UK
| | | | - Alexander J. Titus
- Colossal Biosciences, Dallas, TX, USA
- Information Sciences Institute, University of Southern California, Los Angeles, USA
| |
Collapse
|
2
|
Robertson MR, Olivier LJ, Roberts J, Yonthantham L, Banda C, N’gombwa IB, Dale R, Tiller LN. Testing the Effectiveness of the "Smelly" Elephant Repellent in Controlled Experiments in Semi-Captive Asian and African Savanna Elephants. Animals (Basel) 2023; 13:3334. [PMID: 37958089 PMCID: PMC10647569 DOI: 10.3390/ani13213334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Crop-raiding by elephants is one of the most prevalent forms of human-elephant conflict and is increasing with the spread of agriculture into wildlife range areas. As the magnitude of conflicts between people and elephants increases across Africa and Asia, mitigating and reducing the impacts of elephant crop-raiding has become a major focus of conservation intervention. In this study, we tested the responses of semi-captive elephants to the "smelly" elephant repellent, a novel olfactory crop-raiding mitigation method. At two trial sites, in Zambia and Thailand, African elephants (Loxodonta africana) and Asian elephants (Elephas maximus) were exposed to the repellent, in order to test whether or not they entered an area protected by the repellent and whether they ate the food provided. The repellent elicited clear reactions from both study groups of elephants compared to control conditions. Generalised linear models revealed that the elephants were more alert, sniffed more, and vocalised more when they encountered the repellent. Although the repellent triggered a response, it did not prevent elephants from entering plots protected by the repellent or from eating crops, unlike in trials conducted with wild elephants. Personality played a role in responses towards the repellent, as the elephants that entered the experimental plots were bolder and more curious individuals. We conclude that, although captive environments provide controlled settings for experimental testing, the ecological validity of testing human-elephant conflict mitigation methods with captive wildlife should be strongly considered. This study also shows that understanding animal behaviour is essential for improving human-elephant coexistence and for designing deterrence mechanisms. Appreciating personality traits in elephants, especially amongst "problem" elephants who have a greater propensity to crop raid, could lead to the design of new mitigation methods designed to target these individuals.
Collapse
Affiliation(s)
| | - Lisa J. Olivier
- Game Rangers International, Plot 2374, The Village, Leopards Hill Road, Lusaka 10101, Zambia; (L.J.O.); (C.B.)
| | - John Roberts
- Golden Triangle Asian Elephant Foundation, 229 Moo 1, Chiang Saen, Chiang Rai 57150, Thailand; (J.R.); (L.Y.)
| | - Laddawan Yonthantham
- Golden Triangle Asian Elephant Foundation, 229 Moo 1, Chiang Saen, Chiang Rai 57150, Thailand; (J.R.); (L.Y.)
| | - Constance Banda
- Game Rangers International, Plot 2374, The Village, Leopards Hill Road, Lusaka 10101, Zambia; (L.J.O.); (C.B.)
| | - Innocent B. N’gombwa
- Department of National Parks and Wildlife, Ministry of Tourism, Chilanga 10101, Zambia;
| | - Rachel Dale
- Department for Psychosomatic Medicine and Psychotherapy, University for Continuing Education Krems, 3500 Krems an der Donau, Austria;
| | - Lydia N. Tiller
- Amboseli Trust for Elephants, Langata, Nairobi 15135, Kenya;
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury CT2 7NZ, UK
| |
Collapse
|
3
|
Cabral de Mel SJ, Seneweera S, de Mel RK, Dangolla A, Weerakoon DK, Maraseni T, Allen BL. Current and Future Approaches to Mitigate Conflict between Humans and Asian Elephants: The Potential Use of Aversive Geofencing Devices. Animals (Basel) 2022; 12:2965. [PMID: 36359089 PMCID: PMC9653792 DOI: 10.3390/ani12212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
Asian elephants are a principal cause of human-wildlife conflict. This results in the death/injury of elephants and humans and large-scale crop and property damage. Most current human-elephant conflict (HEC) mitigation tools lack the flexibility to accommodate the ecological needs of elephants and are ineffective at reducing HEC in the long-term. Here we review common HEC mitigation tools used in Asia and the potential of Aversive Geofencing Devices (AGDs) to manage problem elephants. AGDs can be configured to monitor animal movements in real-time and deliver auditory warnings followed by electric stimuli whenever animals attempt to move across user-specified virtual boundaries. Thus, AGDs are expected to condition elephants to avoid receiving shocks and keep them away from virtually fenced areas, while providing alternative routes that can be modified if required. Studies conducted using AGDs with other species provide an overview of their potential in conditioning wild animals. We recommend that the efficacy and welfare impact of AGDs be evaluated using captive elephants along with public perception of using AGDs on elephants as a means of addressing the inherent deficiencies of common HEC mitigation tools. If elephants could be successfully conditioned to avoid virtual fences, then AGDs could resolve many HEC incidents throughout Asia.
Collapse
Affiliation(s)
- Surendranie Judith Cabral de Mel
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
| | - Saman Seneweera
- National Institute of Fundamental Studies, Kandy 20000, Sri Lanka
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Ruvinda Kasun de Mel
- Centre for Behavioural and Physiological Ecology, Zoology, University of New England, Armidale, NSW 2351, Australia
| | - Ashoka Dangolla
- Department of Veterinary Clinical Sciences, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Devaka Keerthi Weerakoon
- Department of Zoology and Environmental Sciences, University of Colombo, Colombo 00300, Sri Lanka
| | - Tek Maraseni
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Benjamin Lee Allen
- Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Centre for African Conservation Ecology, Nelson Mandela University, Port Elizabeth 6034, South Africa
| |
Collapse
|