1
|
Helldin JO. Are several small wildlife crossing structures better than a single large? Arguments from the perspective of large wildlife conservation. NATURE CONSERVATION 2022. [DOI: 10.3897/natureconservation.47.67979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Crossing structures for large wildlife are increasingly being constructed at major roads and railways in many countries and current guidelines for wildlife mitigation at linear infrastructures tend to advocate for large crossing structures sited at major movement corridors for the target species. The concept of movement corridors has, however, been challenged and pinching animal movements into bottlenecks entails risks. In this paper, I address the SLOSS dilemma of road ecology, i.e. the discussion whether a Single Large Or Several Small crossing structures along a linear barrier would produce the most benefit for wildlife, using the case of crossing structures for large wildlife in Sweden. I point out risks, ecological as well as practical, with investing in one large crossing structure and list a number of situations where it may be more beneficial to distribute the conservation efforts in the landscape by constructing several smaller crossing structures; for example, when the ecological knowledge is insufficient, when animal interactions are expected to be significant, when the landscape changes over time or when future human development cannot be controlled. I argue that such situations are often what infrastructure planning faces and that the default strategy, therefore, should be to distribute, rather than to concentrate passage opportunities along major transport infrastructures. I suggest that distributing passage opportunities over several smaller crossing structures would convey a risk diversification and that this strategy could facilitate the planning of wildlife mitigation. What to choose would however depend on, inter alia, landscape composition and ecology and on relationships amongst target species. A single large structure should be selected where it is likely that it can serve a large proportion of target animals and where the long-term functionality of the crossing structure can be guaranteed. New research is needed to support trade-offs between size and number of crossing structures. Cost-effectiveness analyses of wildlife crossing structures are currently rare and need to be further explored. Camera trapping and video surveillance of crossing structures provide opportunities to analyse details concerning, for example, any individual biases according to sex, age, status and grouping and any antagonism between species and individuals. Wildlife ecology research needs to better address questions posed by road and railway planning regarding the importance of specific movement routes and movement distances.
Collapse
|
2
|
Khorozyan I, Heurich M. Large-Scale Sheep Losses to Wolves (Canis lupus) in Germany Are Related to the Expansion of the Wolf Population but Not to Increasing Wolf Numbers. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.778917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recovery of predator populations triggers conflicts due to livestock depredation losses, particularly in Germany where the wolf (Canis lupus) population grows exponentially and livestock (especially sheep) losses raise public concerns and motivate the authorities to control wolf numbers. Yet, the effects of wolf numbers and alternative factors, such as abundance of prey and livestock, on livestock losses in this country are not investigated. In this study, we collected and analyzed data on the numbers of reproductive units of wolves (packs and pairs together) as a surrogate of adult wolf numbers, sheep killed by wolves, living sheep, red deer (Cervus elaphus), roe deer (Capreolus capreolus), and wild boar (Sus scrofa) in every German state and year from 2002 to 2019. We applied a negative binomial Generalized Linear Mixed Model (GLMM) to estimate the effects of these predictors on the numbers of sheep killed by wolves. We also examined the relationships between the percentages of killed/living sheep and the numbers of living sheep. Ranking of 63 models based on the Akaike information criterion revealed that sheep losses were determined by state, year, and number of living sheep, not by wolf numbers, at high precision and accuracy. The number of sheep killed by wolves increased consistently by 41% per year and by 30% for every additional 10,000 sheep, mainly in the north where most wolf territories are concentrated. This means that sheep are protected insufficiently and/or ineffectively. The percentages of killed/living sheep consistently increased by 0.02–0.05% per state and year, with the maximum percentage of 0.7%, on a backdrop of decreasing numbers of living sheep. In conclusion, we demonstrate that sheep losses in Germany have been driven by the expansion of the wolf population, not by wolf numbers, and by the number of sheep available. We suggest that Germany’s wolf conservation policy should focus on alternative non-lethal interventions, enforcement and standardization of intervention monitoring, and promotion of wolf tolerance rather than on lethal control of wolf population size.
Collapse
|