2
|
Iltis AS, Connell A, Cooper L, Gee PO, Jefferson NM, Johnson HA, Kingston GM, Roberts GV, Scott N, Smith A, Waddy S, Woodard L, DuBois JM. Improving Kidney Disease Research in the Black Community: The Essential Role of Black Voices in the APOLLO Study. Am J Kidney Dis 2021; 79:750-753. [PMID: 34653538 DOI: 10.1053/j.ajkd.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ana S Iltis
- Center for Bioethics, Health and Society, Wake Forest University, Winston-Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | - James M DuBois
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Zhang Z, Sun Z, Fu J, Lin Q, Banu K, Chauhan K, Planoutene M, Wei C, Salem F, Yi Z, Liu R, Cravedi P, Cheng H, Hao K, O'Connell PJ, Ishibe S, Zhang W, Coca SG, Gibson IW, Colvin RB, He JC, Heeger PS, Murphy BT, Menon MC. Recipient APOL1 risk alleles associate with death-censored renal allograft survival and rejection episodes. J Clin Invest 2021; 131:e146643. [PMID: 34499625 DOI: 10.1172/jci146643] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 09/01/2021] [Indexed: 11/17/2022] Open
Abstract
Apolipoprotein L1 (APOL1) risk-alleles in donor kidneys associate with graft loss but whether recipient risk-allele expression impacts transplant outcomes is unclear. To test whether recipient APOL1 risk-alleles independently correlate with transplant outcomes, we analyzed genome-wide SNP genotyping data of donors and recipients from two kidney transplant cohorts, Genomics of Chronic Allograft Rejection (GOCAR) and Clinical Trials in Organ Transplantation (CTOT1/17). We estimated genetic ancestry (quantified as proportion of African ancestry or pAFR) by ADMIXTURE and correlated APOL1 genotypes and pAFR with outcomes. In the GOCAR discovery set, we observed that the number of recipient APOL1 G1/G2 alleles (R-nAPOL1) associated with increased risk of death-censored allograft loss (DCAL), independent of ancestry (HR = 2.14; P = 0.006), and within the subgroup of African American and Hispanic (AA/H) recipients (HR = 2.36; P = 0.003). R-nAPOL1 also associated with increased risk of any T cell-mediated rejection (TCMR) event. These associations were validated in CTOT1/17. Ex vivo studies of peripheral blood mononuclear cells revealed unanticipated high APOL1 expression in activated CD4+/CD8+ T cells and natural killer cells. We detected enriched immune response gene pathways in risk-allele carriers vs. non-carriers on the kidney transplant waitlist and among healthy controls. Our findings demonstrate an immunomodulatory role for recipient APOL1 risk-alleles associating with TCMR and DCAL. This finding has broader implications for immune mediated injury to native kidneys.
Collapse
Affiliation(s)
- Zhongyang Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Zeguo Sun
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Jia Fu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Qisheng Lin
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Khadija Banu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Kinsuk Chauhan
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Marina Planoutene
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Zhengzi Yi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Haoxiang Cheng
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute for Medical Research, Sydney University, Westmead, Australia
| | - Shuta Ishibe
- Department of Medicine, Yale University School of Medicine, New Haven, United States of America
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Ian W Gibson
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Robert B Colvin
- Department of Pathology, Massachusetts General Hospital, Boston, United States of America
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Barbara T Murphy
- Division of Nephrology, Department of Medicine, Icahn school of Medicine at Mount Sinai, New York, United States of America
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, United States of America
| |
Collapse
|
4
|
Williams N, Korneffel K, Koizumi N, Ortiz J. African American polycystic kidney patients receive higher risk kidneys, but do not face increased risk for graft failure or post-transplant mortality. Am J Surg 2020; 221:1093-1103. [PMID: 33028497 DOI: 10.1016/j.amjsurg.2020.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/31/2020] [Accepted: 09/22/2020] [Indexed: 10/23/2022]
Abstract
African Americans (AA) are disproportionately affected by end-stage renal disease (ESRD) and have worse outcomes following renal transplantation. Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic condition leading to ESRD necessitating transplant. We explored this population with respect to race by conducting a retrospective analysis of the UNOS database between 2005 and 2019. Our study included 10,842 (AA n = 1661; non-AA n = 9181) transplant recipients whose primary diagnosis was ADPKD. We further stratified the AA ADPKD population with respect to blood groups (AA blood type B n = 295 vs AA non-B blood type n = 1366), and also compared this cohort to AAs with a diagnosis of DM (n = 16,706) to identify unique trends in the ADPKD population. We analyzed recipient and donor characteristics, generated survival curves, and conducted multivariate analyses. African American ADPKD patients waited longer for transplants (924 days vs 747 days P < .001), and were more likely to be on dialysis (76% vs 62%; p < .001). This same group was also more likely to have AA donors (21% vs 9%; p < .001) and marginally higher KDPI kidneys (0.48 vs 0.45; p < .001). AA race was a risk factor for delayed graft function (DGF), increasing the chance of DGF by 45% (OR 1.45 95% CI 1.26-1.67; p < .001). AA race was not associated with graft failure (HR 1.10 95% CI 0.95-1.28; p = .21) or patient mortality (HR 0.84 95% CI 0.69-1.03; p = .09). Racial disparities exist in the ADPKD population. They should be continually studied and addressed to improve transplant equity.
Collapse
Affiliation(s)
- Nathan Williams
- College of Medicine and Life Science, University of Toledo, Toledo, OH, USA.
| | - Katie Korneffel
- College of Medicine and Life Science, University of Toledo, Toledo, OH, USA
| | | | - Jorge Ortiz
- Department of Surgery, Albany Medical College, Albany, NY, USA
| |
Collapse
|
5
|
Holt SG, Kotagiri P, Hogan C, Hughes P, Masterson R. The potential role of antibodies against minor blood group antigens in renal transplantation. Transpl Int 2020; 33:841-848. [PMID: 32619297 DOI: 10.1111/tri.13685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 12/29/2022]
Abstract
Blood group antigens are red blood cell (RBC) surface markers comprising specific carbohydrate moieties attached to the glycolipids and glycoproteins within the membrane. In addition to the major ABO blood group antigens, at least 35 minor blood group antigens have been defined to date. These antigens have immunogenic potential and may cause a transfusion reaction. There is evidence for renal expression of antigens from the Kidd, MNS, Duffy and Lewis groups and therefore the potential for antibodies directed against these antigens to cross-react in a transplanted kidney. In individuals lacking a specific RBC antigen, antibodies may develop after de novo exposure to that antigen, in addition to the potential presence of pre-existing innate antibodies. Relatively little attention has been paid to non-ABO system antibodies, with most reports in the literature focusing on transfusion reactions rather than on any putative role in allograft rejection. Here, we review each of these antigens in the context of renal transplantation and what limited evidence there is on how such immunological risk may be assessed and managed.
Collapse
Affiliation(s)
- Stephen G Holt
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, VIC, Australia
| | - Prasanti Kotagiri
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Chris Hogan
- Department of Haematology, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Australian Redcross, Melbourne, VIC, Australia
| | - Peter Hughes
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, VIC, Australia
| | - Rosemary Masterson
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, Australia.,Department of Medicine (RMH), The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Zhang H, Huo J, Jiang W, Shan Q. Integrated microarray analysis to identify potential biomarkers and therapeutic targets in dilated cardiomyopathy. Mol Med Rep 2020; 22:915-925. [PMID: 32626989 PMCID: PMC7339620 DOI: 10.3892/mmr.2020.11145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/09/2020] [Indexed: 01/20/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a primary cardiomyopathy with high mortality. The aim of the present study was to identify the related genes in DCM. The four expression profiles (GSE17800, GSE21610, GSE42955 and GSE79962) downloaded from the Gene Expression Omnibus (GEO) database were analyzed using RankProd and metaMA R packages to identify differentially expressed genes (DEGs). DEGs were uploaded to the Database for Annotation, Visualization and Integrated Discovery (DAVID), for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. A protein-protein interaction (PPI) network of the DEGs was constructed using the STRING database. In addition, hub genes were identified using the Cytoscape plugin cytoHubba. A mouse DCM model, which established via intraperitoneal injection with doxorubicin (DOX), was used to validate the hub genes. A total of 898 DEGs were identified across the four microarrays. Furthermore, GO analysis demonstrated that these DEGs were mainly enriched in cell adhesion, negative regulation of cell proliferation, negative regulation of apoptotic process and potassium ion transport. In addition, KEGG analysis revealed that DEGs were mainly enriched in the ECM-receptor interaction, the p53 signaling pathway, cardiac muscle contraction and the hypoxia-inducible factor signaling pathway. Proenkephalin (PENK), chordin like 1 (CHRDL1), calumenin (CALU), apolipoprotein L1, insulin-like growth factor binding protein 3 (IGFBP3) and ceruloplasmin (CP) were identified as hub genes in the PPI network. Furthermore, the expression levels of PENK, CHRDL1, IGFBP3, CP and CALU in hearts with DCM were validated using a mouse model. In conclusion, the present study identified six hub genes related to DCM. Therefore, the present results may provide a potential mechanism for DCM involving these hub genes, which may serve as biomarkers for screening and diagnosis in the clinic.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Junyu Huo
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wanying Jiang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qijun Shan
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|