1
|
Manole CG, Soare C, Ceafalan LC, Voiculescu VM. Platelet-Rich Plasma in Dermatology: New Insights on the Cellular Mechanism of Skin Repair and Regeneration. Life (Basel) 2023; 14:40. [PMID: 38255655 PMCID: PMC10817627 DOI: 10.3390/life14010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
The skin's recognised functions may undergo physiological alterations due to ageing, manifesting as varying degrees of facial wrinkles, diminished tautness, density, and volume. Additionally, these functions can be disrupted (patho)physiologically through various physical and chemical injuries, including surgical trauma, accidents, or chronic conditions like ulcers associated with diabetes mellitus, venous insufficiency, or obesity. Advancements in therapeutic interventions that boost the skin's innate regenerative abilities could significantly enhance patient care protocols. The application of Platelet-Rich Plasma (PRP) is widely recognized for its aesthetic and functional benefits to the skin. Yet, the endorsement of PRP's advantages often borders on the dogmatic, with its efficacy commonly ascribed solely to the activation of fibroblasts by the factors contained within platelet granules. PRP therapy is a cornerstone of regenerative medicine which involves the autologous delivery of conditioned plasma enriched by platelets. This is achieved by centrifugation, removing erythrocytes while retaining platelets and their granules. Despite its widespread use, the precise sequences of cellular activation, the specific cellular players, and the molecular machinery that drive PRP-facilitated healing are still enigmatic. There is still a paucity of definitive and robust studies elucidating these mechanisms. In recent years, telocytes (TCs)-a unique dermal cell population-have shown promising potential for tissue regeneration in various organs, including the dermis. TCs' participation in neo-angiogenesis, akin to that attributed to PRP, and their role in tissue remodelling and repair processes within the interstitia of several organs (including the dermis), offer intriguing insights. Their potential to contribute to, or possibly orchestrate, the skin regeneration process following PRP treatment has elicited considerable interest. Therefore, pursuing a comprehensive understanding of the cellular and molecular mechanisms at work, particularly those involving TCs, their temporal involvement in structural recovery following injury, and the interconnected biological events in skin wound healing and regeneration represents a compelling field of study.
Collapse
Affiliation(s)
- Catalin G. Manole
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Ultrastructural Pathology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Cristina Soare
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Department of Cellular and Molecular Biology and Histology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Cell Biology, Neurosciences and Experimental Myology Laboratory, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
| | - Vlad M. Voiculescu
- Department of Oncological Dermatology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
2
|
Kweon S, Kim S, Choi HS, Jo K, Park JM, Baek EJ. Current status of platelet manufacturing in 3D or bioreactors. Biotechnol Prog 2023; 39:e3364. [PMID: 37294031 DOI: 10.1002/btpr.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023]
Abstract
Blood shortages for transfusion are global issues of grave concern. As in vitro manufactured platelets are promising substitutes for blood donation, recent research has shown progresses including different cell sources, different bioreactors, and three-dimensional materials. The first-in-human clinical trial of cultured platelets using induced pluripotent stem cell-derived platelets began in Japan and demonstrated its quality, safety, and efficacy. A novel bioreactor with fluid motion for platelet production has been reported. Herein, we discuss various cell sources for blood cell production, recent advances in manufacturing processes, and clinical applications of cultured blood.
Collapse
Affiliation(s)
- Soonho Kweon
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Suyeon Kim
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Hye Sook Choi
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Kyeongwon Jo
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Ju Mi Park
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
| | - Eun Jung Baek
- Department of Research and Development, ArtBlood Inc, Seoul, Republic of Korea
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea
- Department of Laboratory Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
In Vitro Human Haematopoietic Stem Cell Expansion and Differentiation. Cells 2023; 12:cells12060896. [PMID: 36980237 PMCID: PMC10046976 DOI: 10.3390/cells12060896] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The haematopoietic system plays an essential role in our health and survival. It is comprised of a range of mature blood and immune cell types, including oxygen-carrying erythrocytes, platelet-producing megakaryocytes and infection-fighting myeloid and lymphoid cells. Self-renewing multipotent haematopoietic stem cells (HSCs) and a range of intermediate haematopoietic progenitor cell types differentiate into these mature cell types to continuously support haematopoietic system homeostasis throughout life. This process of haematopoiesis is tightly regulated in vivo and primarily takes place in the bone marrow. Over the years, a range of in vitro culture systems have been developed, either to expand haematopoietic stem and progenitor cells or to differentiate them into the various haematopoietic lineages, based on the use of recombinant cytokines, co-culture systems and/or small molecules. These approaches provide important tractable models to study human haematopoiesis in vitro. Additionally, haematopoietic cell culture systems are being developed and clinical tested as a source of cell products for transplantation and transfusion medicine. This review discusses the in vitro culture protocols for human HSC expansion and differentiation, and summarises the key factors involved in these biological processes.
Collapse
|
4
|
Liu H, Liu J, Wang L, Zhu F. In vitro Generation of Megakaryocytes and Platelets. Front Cell Dev Biol 2021; 9:713434. [PMID: 34458269 PMCID: PMC8397471 DOI: 10.3389/fcell.2021.713434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Platelets, the tiny anucleate cells responsible for stopping bleeding through thrombosis, are derived from hematopoietic stem cells through a series of differentiation steps. Thrombocytopenia, characterized by abnormally low blood platelet counts, may arise from cancer therapies, trauma, sepsis, as well as blood disorders, and could become a life-threatening problem. Platelet transfusion is the most effective strategy to treat thrombocytopenia, however, the source of platelets is in great shortage. Therefore, in vitro generation of platelets has become an important topic and numerous attempts have been made toward generating platelets from different types of cells, including hematopoietic stem cells, pluripotent stem cells, fibroblast cells, and adipose-derived cells. In this review, we will detail the efforts made to produce, in the in vitro culture, platelets from these different cell types. Importantly, as transfusion medicine requires a huge number of platelets, we will highlight some studies on producing platelets on a large scale. Although new methods of gene manipulation, new culture conditions, new cytokines and chemical compounds have been introduced in platelet generation research since the first study of hematopoietic stem cell-derived platelets nearly 30 years ago, limited success has been achieved in obtaining truly mature and functional platelets in vitro, indicating the studies of platelets fall behind those of other blood cell types. This is possibly because megakaryocytes, which produce platelets, are very rare in blood and marrow. We have previously developed a platform to identify new extrinsic and intronic regulators for megakaryocytic lineage development, and in this review, we will also cover our effort on that. In summary, stem cell-based differentiation is a promising way of generating large-scale platelets to meet clinical needs, and continuous study of the cellular development of platelets will greatly facilitate this.
Collapse
Affiliation(s)
- Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Krisch L, Brachtl G, Hochmann S, Andrade AC, Oeller M, Ebner-Peking P, Schallmoser K, Strunk D. Improving Human Induced Pluripotent Stem Cell-Derived Megakaryocyte Differentiation and Platelet Production. Int J Mol Sci 2021; 22:8224. [PMID: 34360992 PMCID: PMC8348107 DOI: 10.3390/ijms22158224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Several protocols exist for generating megakaryocytes (MKs) and platelets from human induced pluripotent stem cells (hiPSCs) with limited efficiency. We observed previously that mesoderm induction improved endothelial and stromal differentiation. We, therefore, hypothesized that a protocol modification prior to hemogenic endothelial cell (HEC) differentiation will improve MK progenitor (MKP) production and increase platelet output. We further asked if basic media composition affects MK maturation. In an iterative process, we first compared two HEC induction protocols. We found significantly more HECs using the modified protocol including activin A and CHIR99021, resulting in significantly increased MKs. MKs released comparable platelet amounts irrespective of media conditions. In a final validation phase, we obtained five-fold more platelets per hiPSC with the modified protocol (235 ± 84) compared to standard conditions (51 ± 15; p < 0.0001). The regenerative potency of hiPSC-derived platelets was compared to adult donor-derived platelets by profiling angiogenesis-related protein expression. Nineteen of 24 angiogenesis-related proteins were expressed equally, lower or higher in hiPSC-derived compared to adult platelets. The hiPSC-platelet's coagulation hyporeactivity compared to adult platelets was confirmed by thromboelastometry. Further stepwise improvement of hiPSC-platelet production will, thus, permit better identification of platelet-mediated regenerative mechanisms and facilitate manufacture of sufficient amounts of functional platelets for clinical application.
Collapse
Affiliation(s)
- Linda Krisch
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Gabriele Brachtl
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Sarah Hochmann
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - André Cronemberger Andrade
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Michaela Oeller
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Patricia Ebner-Peking
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| | - Katharina Schallmoser
- Department of Transfusion Medicine and SCI-TReCS, Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (M.O.); (K.S.)
| | - Dirk Strunk
- Cell Therapy Institute, Spinal Cord Injury and Tissue Regeneration Center Salzburg (SCI-TReCS), Paracelsus Medical University (PMU), 5020 Salzburg, Austria; (L.K.); (G.B.); (S.H.); (A.C.A.); (P.E.-P.)
| |
Collapse
|
6
|
Fernandes SS, Limaye LS, Kale VP. Differentiated Cells Derived from Hematopoietic Stem Cells and Their Applications in Translational Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:29-43. [PMID: 34114129 DOI: 10.1007/5584_2021_644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hematopoietic stem cells (HSCs) and their development are one of the most widely studied model systems in mammals. In adults, HSCs are predominantly found in the bone marrow, from where they maintain homeostasis. Besides bone marrow and mobilized peripheral blood, cord blood is also being used as an alternate allogenic source of transplantable HSCs. HSCs from both autologous and allogenic sources are being applied for the treatment of various conditions like blood cancers, anemia, etc. HSCs can further differentiate to mature blood cells. Differentiation process of HSCs is being extensively studied so as to obtain a large number of pure populations of various differentiated cells in vitro so that they can be taken up for clinical trials. The ability to generate sufficient quantity of clinical-grade specialized blood cells in vitro would take the field of hematology a step ahead in translational medicine.
Collapse
Affiliation(s)
| | - Lalita S Limaye
- Stem Cell Lab, National Centre for Cell Science, Pune, India
| | - Vaijayanti P Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|