1
|
Sun CF, Lin YH, Ling GX, Gao HJ, Feng XZ, Sun CQ. Systematic review and critical appraisal of predictive models for diabetic peripheral neuropathy: Existing challenges and proposed enhancements. World J Diabetes 2025; 16:101310. [DOI: 10.4239/wjd.v16.i4.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/17/2024] [Accepted: 02/12/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND The trend of risk prediction models for diabetic peripheral neuropathy (DPN) is increasing, but few studies focus on the quality of the model and its practical application.
AIM To conduct a comprehensive systematic review and rigorous evaluation of prediction models for DPN.
METHODS A meticulous search was conducted in PubMed, EMBASE, Cochrane, CNKI, Wang Fang DATA, and VIP Database to identify studies published until October 2023. The included and excluded criteria were applied by the researchers to screen the literature. Two investigators independently extracted data and assessed the quality using a data extraction form and a bias risk assessment tool. Disagreements were resolved through consultation with a third investigator. Data from the included studies were extracted utilizing the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies. Additionally, the bias risk and applicability of the models were evaluated by the Prediction Model Risk of Bias Assessment Tool.
RESULTS The systematic review included 14 studies with a total of 26 models. The area under the receiver operating characteristic curve of the 26 models was 0.629-0.938. All studies had high risks of bias, mainly due to participants, outcomes, and analysis. The most common predictors included glycated hemoglobin, age, duration of diabetes, lipid abnormalities, and fasting blood glucose.
CONCLUSION The predictor model presented good differentiation, calibration, but there were significant methodological flaws and high risk of bias. Future studies should focus on improving the study design and study report, updating the model and verifying its adaptability and feasibility in clinical practice.
Collapse
Affiliation(s)
- Chao-Fan Sun
- Department of Endocrinology, Tsinghua University Yuquan Hospital, Beijing 100040, China
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yu-Han Lin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Guo-Xing Ling
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui-Juan Gao
- Department of Endocrinology, Tsinghua University Yuquan Hospital, Beijing 100040, China
| | - Xing-Zhong Feng
- Department of Endocrinology, Tsinghua University Yuquan Hospital, Beijing 100040, China
| | - Chun-Quan Sun
- Office of Drug Clinical Trial Institution, Health Management Center (Preventive Treatment of Disease) Tsinghua University Yuquan Hospital, Beijing 100040, China
| |
Collapse
|
2
|
Rezaei S, Moncada-Restrepo M, Leng S, Chambers JW, Leng F. Synthesizing unmodified, supercoiled circular DNA molecules in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634800. [PMID: 39896529 PMCID: PMC11785245 DOI: 10.1101/2025.01.24.634800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Supercoiled (Sc) circular DNA, such as plasmids, has shown therapeutic potential since the 1990s, but is limited by bacterial modifications, unnecessary DNA sequences, and contaminations that may trigger harmful responses. To overcome these challenges, we have developed two novel scalable biochemical methods to synthesize unmodified Sc circular DNA. Linear DNA with two loxP sites in the same orientation is generated via PCR or rolling circle amplification. Cre recombinase then converts this linear DNA into relaxed circular DNA. After T5 exonuclease removes unwanted linear DNA, topoisomerases are employed to generate Sc circular DNA. We have synthesized EGFP-FL, a 2,002 bp mini-circular DNA carrying essential EGFP expression elements. EGFP-FL transfected human HeLa and mouse C2C12 cells with much higher efficiency than E. coli-derived plasmids. These new biochemical methods can produce unmodified Sc circular DNA, in length from 196 base pairs to several kilobases and in quantities from micrograms to milligrams, providing a promising platform for diverse applications.
Collapse
Affiliation(s)
- Sepideh Rezaei
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Monica Moncada-Restrepo
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Sophia Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Top Biosciences, LLC, 7405 SW 157 Terrace, Palmetto Bay, FL 33157
| | - Jeremy W. Chambers
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Environmental Health Sciences, Florida International University, Miami, FL 33199
| | - Fenfei Leng
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Top Biosciences, LLC, 7405 SW 157 Terrace, Palmetto Bay, FL 33157
| |
Collapse
|
3
|
Khartabil N, Avoundjian A. Gene Therapy and Diabetes: A Narrative Review of Recent Advances and the Role of Multidisciplinary Healthcare Teams. Genes (Basel) 2025; 16:107. [PMID: 39858654 PMCID: PMC11764737 DOI: 10.3390/genes16010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/01/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Introduction: Gene therapy has emerged as a promising frontier in the management of diabetes, offering innovative approaches to address both type 1 and type 2 diabetes. This narrative review examines the advancements in gene therapy applications, focusing on both animal and human studies, and includes a total of 11 studies in adherence to PRISMA guidelines. These studies utilize various viral vectors, such as adeno-associated virus (AAV) and lentivirus, to deliver genes that regulate insulin production and enhance angiogenesis. This review aims to synthesize recent advancements in gene therapy for both type 1 and type 2 diabetes and its complications, and to explore the evolving role of pharmacists in this emerging field. Methods: A comprehensive search was conducted to identify relevant studies on gene therapy for diabetes. Databases such as PubMed, the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and Google Scholar were queried using keywords such as "Diabetes", "gene therapy", "Type 1 diabetes", and "Type 2 diabetes". Both animal and human studies were included to provide a broad perspective on the advancements in this field. Results: Animal model studies have shown promising results, including sustained insulin production, improved glucose homeostasis, and enhanced wound healing. Human studies, though fewer in number, have reported significant advancements. Patients with diabetic neuropathy treated with plasmid VEGF and recombinant adeno-associated virus (rAAV) showed improvements in neuropathic symptoms and glycemic control. Other studies involving intramuscular injections of VM202 and bicistronic VEGF165/HGF plasmid have reported pain reduction, improved healing of ischemic lesions, and increased angiogenesis. Conclusions: Despite these encouraging results, limitations such as small sample sizes, short follow-up periods, and the necessity for more extensive clinical trials persist. Diabetes is a metabolic syndrome that requires the collaboration of a multidisciplinary team to assist in several aspects of implementing successful gene therapy. Several healthcare providers and policy makers may play a crucial role in patient education, counseling, and the management of gene therapy treatments.
Collapse
Affiliation(s)
- Nadia Khartabil
- School of Pharmacy, Center of Graduate Studies, West Coast University, 590 N Vermont Ave, Los Angeles, CA 90004, USA;
| | | |
Collapse
|
4
|
Pantazopoulos D, Gouveri E, Rizzo M, Papanas N. Cilostazol for the treatment of distal symmetrical polyneuropathy in diabetes mellitus: Where do we stand? J Diabetes Complications 2024; 38:108905. [PMID: 39522391 DOI: 10.1016/j.jdiacomp.2024.108905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Diabetic Neuropathy (DN) is one of the most frequent chronic complications of diabetes mellitus. Its commonest form, distal symmetrical polyneuropathy (DSPN), is characterised by slowly progressing length-dependent nerve damage in the lower limbs, increasing the risk of foot ulcerations and leading to symptoms like tingling, pain, or numbness. AIM The aim of this review was to discuss the utility of cilostazol, a phosphodiesterase inhibitor with known antiplatelet, vasodilatory, anti-inflammation properties, in the treatment of DSPN. RESULTS Preclinical studies in animals have demonstrated the ability of cilostazol to improve nerve function and to protect from peripheral nerve disruption and central sensitisation. However, clinical trials in humans are very sparse and have so far not been encouraging. CONCLUSIONS Further research is needed to fully understand the mechanisms and potential efficacy of cilostazol in treating DSPN.
Collapse
Affiliation(s)
- Dimitrios Pantazopoulos
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), School of Medicine, University of Palermo, Palermo, Italy
| | - Nikolaos Papanas
- Diabetes Centre-Diabetic Foot Clinic, Second Department of Internal Medicine, Democritus University of Thrace, University Hospital of Alexandroupolis, 68100 Alexandroupolis, Greece.
| |
Collapse
|
5
|
Patel P, Thakkar K, Shah D, Shah U, Pandey N, Patel J, Patel A. Decrypting the multifaceted peripheral neuropathy based on molecular pathology and therapeutics: a comprehensive review. Arch Physiol Biochem 2024; 130:886-897. [PMID: 38588401 DOI: 10.1080/13813455.2024.2336916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
CONTEXT Peripheral neuropathy (PN) is a multifaceted complication characterized by nerve damage due to oxidative stress, inflammatory mediators, and dysregulated metabolic processes. Early PN manifests as sensory changes that develop progressively in a "stocking and glove" pattern. METHODS AND MECHANISMS A thorough review of literature has been done to find the molecular pathology, clinical trials that have been conducted to screen the effects of different drugs, current treatments and novel approaches used in PN therapy. Diabetic neuropathy occurs due to altered protein kinase C activity, elevated polyol pathway activity in neurons, and Schwann cells-induced hyperglycemia. Other causes involve chemotherapy exposure, autoimmune ailments, and chronic ethanol intake. CONCLUSION Symptomatic treatments for neuropathic pain include use of tricyclic antidepressants, anticonvulsants, and acetyl-L-carnitine. Patients will have new hope if clinicians focus on novel therapies including gene therapy, neuromodulation techniques, and cannabidiol as an alternative to traditional medications, as management is still not ideal.
Collapse
Affiliation(s)
- Praysha Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Krishna Thakkar
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Div Shah
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Umang Shah
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| | - Nilesh Pandey
- Health Science Center, Louisiana State University, Shreveport, LA, USA
| | - Jayesh Patel
- Consultant, Vascular surgeon, Shree Krishna Hospital, Karamsad, Gujarat, India
| | - Alkeshkumar Patel
- Ramanbhai Patel College of Pharmacy, CHARUSAT, Changa, Gujarat, India
| |
Collapse
|
6
|
Li YZ, Ji RR. Gene therapy for chronic pain management. Cell Rep Med 2024; 5:101756. [PMID: 39366385 PMCID: PMC11513853 DOI: 10.1016/j.xcrm.2024.101756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/20/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Despite significant advances in identifying molecular targets for chronic pain over the past two decades, many remain difficult to target with traditional methods. Gene therapies such as antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR, and virus-based delivery systems have played crucial roles in discovering and validating new pain targets. While there has been a surge in gene therapy-based clinical trials, those focusing on pain as the primary outcome remain uncommon. This review examines various gene therapy strategies, including ASOs, small interfering RNA (siRNAs), optogenetics, chemogenetics, and CRISPR, and their delivery methods targeting primary sensory neurons and non-neuronal cells, including glia and chondrocytes. We also explore emerging gene therapy tools and highlight gene therapy's clinical potential in pain management, including trials targeting pain-related diseases. Advances in single-cell analysis of sensory neurons and non-neuronal cells, along with the development of new delivery tools, are poised to accelerate the application of gene therapy in pain medicine.
Collapse
Affiliation(s)
- Yi-Ze Li
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Departments of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
7
|
Yum Y, Park S, Nam YH, Yoon J, Song H, Kim HJ, Lim J, Jung SC. Therapeutic Effect of Schwann Cell-Like Cells Differentiated from Human Tonsil-Derived Mesenchymal Stem Cells on Diabetic Neuropathy in db/db Mice. Tissue Eng Regen Med 2024; 21:761-776. [PMID: 38619758 PMCID: PMC11187028 DOI: 10.1007/s13770-024-00638-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/23/2024] [Accepted: 03/12/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Diabetic neuropathy (DN) is the most common complication of diabetes, and approximately 50% of patients with this disease suffer from peripheral neuropathy. Nerve fiber loss in DN occurs due to myelin defects and is characterized by symptoms of impaired nerve function. Schwann cells (SCs) are the main support cells of the peripheral nervous system and play important roles in several pathways contributing to the pathogenesis and development of DN. We previously reported that human tonsil-derived mesenchymal stem cells differentiated into SCs (TMSC-SCs), named neuronal regeneration-promoting cells (NRPCs), which cells promoted nerve regeneration in animal models with peripheral nerve injury or hereditary peripheral neuropathy. METHODS In this study, NRPCs were injected into the thigh muscles of BKS-db/db mice, a commonly used type 2 diabetes model, and monitored for 26 weeks. Von Frey test, sensory nerve conduction study, and staining of sural nerve, hind foot pad, dorsal root ganglia (DRG) were performed after NRPCs treatment. RESULTS Von Frey test results showed that the NRPC treatment group (NRPC group) showed faster responses to less force than the vehicle group. Additionally, remyelination of sural nerve fibers also increased in the NRPC group. After NRPCs treatment, an improvement in response to external stimuli and pain sensation was expected through increased expression of PGP9.5 in the sole and TRPV1 in the DRG. CONCLUSION The NRPCs treatment may alleviate DN through the remyelination and the recovery of sensory neurons, could provide a better life for patients suffering from complications of this disease.
Collapse
Affiliation(s)
- Yoonji Yum
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Saeyoung Park
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Yu Hwa Nam
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Juhee Yoon
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Hyeryung Song
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Ho Jin Kim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc., 17, Pangyo-ro 228beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13487, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, College of Medicine, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
- Graduate Program in System Health Science and Engineering, Ewha Womans University, 25 Magokdong-ro-2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea.
| |
Collapse
|
8
|
Hu J, Fu J, Cai Y, Chen S, Qu M, Zhang L, Fan W, Wang Z, Zeng Q, Zou J. Bioinformatics and systems biology approach to identify the pathogenetic link of neurological pain and major depressive disorder. Exp Biol Med (Maywood) 2024; 249:10129. [PMID: 38993198 PMCID: PMC11236560 DOI: 10.3389/ebm.2024.10129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Neurological pain (NP) is always accompanied by symptoms of depression, which seriously affects physical and mental health. In this study, we identified the common hub genes (Co-hub genes) and related immune cells of NP and major depressive disorder (MDD) to determine whether they have common pathological and molecular mechanisms. NP and MDD expression data was downloaded from the Gene Expression Omnibus (GEO) database. Common differentially expressed genes (Co-DEGs) for NP and MDD were extracted and the hub genes and hub nodes were mined. Co-DEGs, hub genes, and hub nodes were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. Finally, the hub nodes, and genes were analyzed to obtain Co-hub genes. We plotted Receiver operating characteristic (ROC) curves to evaluate the diagnostic impact of the Co-hub genes on MDD and NP. We also identified the immune-infiltrating cell component by ssGSEA and analyzed the relationship. For the GO and KEGG enrichment analyses, 93 Co-DEGs were associated with biological processes (BP), such as fibrinolysis, cell composition (CC), such as tertiary granules, and pathways, such as complement, and coagulation cascades. A differential gene expression analysis revealed significant differences between the Co-hub genes ANGPT2, MMP9, PLAU, and TIMP2. There was some accuracy in the diagnosis of NP based on the expression of ANGPT2 and MMP9. Analysis of differences in the immune cell components indicated an abundance of activated dendritic cells, effector memory CD8+ T cells, memory B cells, and regulatory T cells in both groups, which were statistically significant. In summary, we identified 6 Co-hub genes and 4 immune cell types related to NP and MDD. Further studies are needed to determine the role of these genes and immune cells as potential diagnostic markers or therapeutic targets in NP and MDD.
Collapse
Affiliation(s)
- Jinjing Hu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jia Fu
- Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Yuxin Cai
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Shuping Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Mengjian Qu
- Department of Rehabilitation, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Rehabilitation Laboratory, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lisha Zhang
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Department of Clinical Medicine, Suzhou Vocational Health College, Suzhou, China
| | - Weichao Fan
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ziyi Wang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
| | - Jihua Zou
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, China
- Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| |
Collapse
|
9
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Upshaw WC, Soileau LG, Storey NR, Perkinson KA, Luther PM, Spillers NJ, Robinson CL, Miller BC, Ahmadzadeh S, Viswanath O, Shekoohi S, Kaye AD. An extract of phase II and III trials on recent developments in managing neuropathic pain syndromes: diabetic peripheral neuropathy, trigeminal neuralgia, and postherpetic neuralgia. Expert Opin Emerg Drugs 2024; 29:103-112. [PMID: 38410863 DOI: 10.1080/14728214.2024.2323193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
INTRODUCTION Neuropathic pain (NP) conditions involve lesions to the somatosensory nervous system leading to chronic and debilitating pain. Many patients suffering from NP utilize pharmacological treatments with various drugs that seek to reduce pathologic neuronal states. However, many of these drugs show poor efficacy as well as cause significant adverse effects. Because of this, there is a major need for the development of safer and more efficacious drugs to treat NP. AREAS COVERED In this review, we analyzed current treatments being developed for a variety of NP conditions. Specifically, we sought drugs in phase II/III clinical trials with indications for NP conditions. Various databases were searched including Google Scholar, PubMed, and clinicaltrials.gov. EXPERT OPINION All the mentioned targets for treatments of NP seem to be promising alternatives for existing treatments that often possess poor side effect profiles for patients. However, gene therapy potentially offers the unique ability to inject a plasmid containing growth factors leading to nerve growth and repair. Because of this, gene therapy appears to be the most intriguing new treatment for NP.
Collapse
Affiliation(s)
- William C Upshaw
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Lenise G Soileau
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Nicholas R Storey
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | | | - Patrick M Luther
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Noah J Spillers
- School of Medicine, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Christopher L Robinson
- Beth Israel Deaconess Medical Center, Department of Anesthesiology, Critical Care, and Pain Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin C Miller
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
- Creighton University School of Medicine, Phoenix, AZ, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| |
Collapse
|
11
|
Mallick-Searle T, Adler JA. Update on Treating Painful Diabetic Peripheral Neuropathy: A Review of Current US Guidelines with a Focus on the Most Recently Approved Management Options. J Pain Res 2024; 17:1005-1028. [PMID: 38505500 PMCID: PMC10949339 DOI: 10.2147/jpr.s442595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024] Open
Abstract
Painful diabetic peripheral neuropathy (DPN) is a highly prevalent and disabling complication of diabetes that is often misdiagnosed and undertreated. The management of painful DPN involves treating its underlying cause via lifestyle modifications and intensive glucose control, targeting its pathogenesis, and providing symptomatic pain relief, thereby improving patient function and health-related quality of life. Four pharmacologic options are currently approved by the US Food and Drug Administration (FDA) to treat painful DPN. These include three oral medications (duloxetine, pregabalin, and tapentadol extended release) and one topical agent (capsaicin 8% topical system). More recently, the FDA approved several spinal cord stimulation (SCS) devices to treat refractory painful DPN. Although not FDA-approved specifically to treat painful DPN, tricyclic antidepressants, serotonin/norepinephrine reuptake inhibitors, gabapentinoids, and sodium channel blockers are common first-line oral options in clinical practice. Other strategies may be used as part of individualized comprehensive pain management plans. This article provides an overview of the most recent US guidelines for managing painful DPN, with a focus on the two most recently approved treatment options (SCS and capsaicin 8% topical system), as well as evidence for using FDA-approved and guideline-supported drugs and devices. Also discussed are unmet needs for this patient population, and evidence for potential future treatments for painful DPN, including drugs with novel mechanisms of action, electrical stimulation devices, and nutraceuticals.
Collapse
|
12
|
Cai R, Yang J, Wu L, Liu Y, Wang X, Zheng Q, Li L. Accelerating drug development for amyotrophic lateral sclerosis: construction and application of a disease course model using historical placebo group data. Orphanet J Rare Dis 2024; 19:40. [PMID: 38308282 PMCID: PMC10837960 DOI: 10.1186/s13023-024-03057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is an irreversible degenerative disease. Placebo-controlled randomized trials are currently the main trial design to assess the clinical efficacy of drugs for ALS treatment. The aim of this study was to establish models to quantitatively describe the course of ALS, explore influencing factors, and provide the necessary information for ALS drug development. METHODS We conducted a comprehensive search of PubMed and the Cochrane Library Central Register for placebo-controlled trials that evaluated treatments for ALS. From these trials, we extracted the clinical and demographic characteristics of participants in the placebo group, as well as outcome data, which encompassed overall survival (OS) and Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) scores, at various time points. RESULTS In total, 47 studies involving 6118 participants were included. Disease duration and the proportion of patients receiving riluzole were identified as significant factors influencing OS in the placebo group. Specifically, the median OS was 35.5 months for a disease duration of 9 months, whereas it was 20.0 months for a disease duration of 36 months. Furthermore, for every 10% increase in the proportion of patients treated with riluzole (100 mg daily), there was an association with a median OS extension of approximately 0.4 months. The estimated time for the ALSFRS-R score in the placebo group to decrease to 50% of its maximum effect from baseline level was approximately 17.5 months, and the time to reach a plateau was about 40 months. CONCLUSIONS The established disease course model of the historical placebo group is valuable in the decision-making process for the clinical development of ALS drugs. It serves not only as an external control to evaluate the efficacy of the tested drug in single-arm trials but also as prior information that aids in accurately estimating the posterior distribution of the disease course in the placebo group during small-sample clinical trials.
Collapse
Affiliation(s)
- Ruifen Cai
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, 201203, China
| | - Juan Yang
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, 201203, China
| | - Lijuan Wu
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, 201203, China
| | - Yixiao Liu
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, 201203, China
| | - Xinrui Wang
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, 201203, China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, 201203, China.
| | - Lujin Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai, 201203, China.
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Xue Y, Zhang Y, Zhong Y, Du S, Hou X, Li W, Li H, Wang S, Wang C, Yan J, Kang DD, Deng B, McComb DW, Irvine DJ, Weiss R, Dong Y. LNP-RNA-engineered adipose stem cells for accelerated diabetic wound healing. Nat Commun 2024; 15:739. [PMID: 38272900 PMCID: PMC10811230 DOI: 10.1038/s41467-024-45094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Adipose stem cells (ASCs) have attracted considerable attention as potential therapeutic agents due to their ability to promote tissue regeneration. However, their limited tissue repair capability has posed a challenge in achieving optimal therapeutic outcomes. Herein, we conceive a series of lipid nanoparticles to reprogram ASCs with durable protein secretion capacity for enhanced tissue engineering and regeneration. In vitro studies identify that the isomannide-derived lipid nanoparticles (DIM1T LNP) efficiently deliver RNAs to ASCs. Co-delivery of self-amplifying RNA (saRNA) and E3 mRNA complex (the combination of saRNA and E3 mRNA is named SEC) using DIM1T LNP modulates host immune responses against saRNAs and facilitates the durable production of proteins of interest in ASCs. The DIM1T LNP-SEC engineered ASCs (DS-ASCs) prolong expression of hepatocyte growth factor (HGF) and C-X-C motif chemokine ligand 12 (CXCL12), which show superior wound healing efficacy over their wild-type and DIM1T LNP-mRNA counterparts in the diabetic cutaneous wound model. Overall, this work suggests LNPs as an effective platform to engineer ASCs with enhanced protein generation ability, expediting the development of ASCs-based cell therapies.
Collapse
Affiliation(s)
- Yonger Xue
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuebao Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Yichen Zhong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shi Du
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Xucheng Hou
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wenqing Li
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Haoyuan Li
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Siyu Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chang Wang
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Binbin Deng
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
| | - David W McComb
- Center for Electron Microscopy and Analysis, The Ohio State University, Columbus, OH, USA
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Darrell J Irvine
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, USA.
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Webster KA. Translational Relevance of Advanced Age and Atherosclerosis in Preclinical Trials of Biotherapies for Peripheral Artery Disease. Genes (Basel) 2024; 15:135. [PMID: 38275616 PMCID: PMC10815340 DOI: 10.3390/genes15010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Approximately 6% of adults worldwide suffer from peripheral artery disease (PAD), primarily caused by atherosclerosis of lower limb arteries. Despite optimal medical care and revascularization, many PAD patients remain symptomatic and progress to critical limb ischemia (CLI) and risk major amputation. Delivery of pro-angiogenic factors as proteins or DNA, stem, or progenitor cells confers vascular regeneration and functional recovery in animal models of CLI, but the effects are not well replicated in patients and no pro-angiogenic biopharmacological procedures are approved in the US, EU, or China. The reasons are unclear, but animal models that do not represent clinical PAD/CLI are implicated. Consequently, it is unclear whether the obstacles to clinical success lie in the toxic biochemical milieu of human CLI, or in procedures that were optimized on inappropriate models. The question is significant because the former case requires abandonment of current strategies, while the latter encourages continued optimization. These issues are discussed in the context of relevant preclinical and clinical data, and it is concluded that preclinical mouse models that include age and atherosclerosis as the only comorbidities that are consistently present and active in clinical trial patients are necessary to predict clinical success. Of the reviewed materials, no biopharmacological procedure that failed in clinical trials had been tested in animal models that included advanced age and atherosclerosis relevant to PAD/CLI.
Collapse
Affiliation(s)
- Keith A. Webster
- Vascular Biology Institute, University of Miami, Miami, FL 33146, USA;
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Wu L, Tang H. The role of N6-methyladenosine modification in rodent models of neuropathic pain: from the mechanism to therapeutic potential. Biomed Pharmacother 2023; 166:115398. [PMID: 37647691 DOI: 10.1016/j.biopha.2023.115398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023] Open
Abstract
Neuropathic pain (NP) is a common chronic pain condition resulted from lesions or diseases of somatosensory nervous system, but the pathogenesis remains unclear. A growing body of evidence supports the relationship between pathogenesis and N6-methyladenosine (m6A) modifications of RNA. However, studies on the role of m6A modifications in NP are still at an early stage. Elucidating different etiologies is important for understanding the specific pathogenesis of NP. This article provides a comprehensive review on the role of m6A methylation modifications including methyltransferases ("writers"), demethylases ("erasers"), and m6A binding proteins ("readers") in NP models. Further analysis of the pathogenic mechanism relationship between m6A and NP provided novel theoretical and practical significance for clinical treatment of NP.
Collapse
Affiliation(s)
- Liping Wu
- Guangxi University of Traditional Chinese Medicine, Nanning, China; The First Clinical Medical College of Guangxi University of Traditional Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Guangxi Traditional Chinese Medicine University Affiliated Fangchenggang Hospital.
| |
Collapse
|
16
|
Genç B, Nho B, Seung H, Helmold B, Park H, Gözütok Ö, Kim S, Park J, Ye S, Lee H, Lee N, Yu SS, Kim S, Lee J, Özdinler H. Novel rAAV vector mediated intrathecal HGF delivery has an impact on neuroimmune modulation in the ALS motor cortex with TDP-43 pathology. Gene Ther 2023; 30:560-574. [PMID: 36823441 DOI: 10.1038/s41434-023-00383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Recombinant adeno-associated virus (rAAV)-based gene therapies offer an immense opportunity for rare diseases, such as amyotrophic lateral sclerosis (ALS), which is defined by the loss of the upper and the lower motor neurons. Here, we describe generation, characterization, and utilization of a novel vector system, which enables expression of the active form of hepatocyte growth factor (HGF) under EF-1α promoter with bovine growth hormone (bGH) poly(A) sequence and is effective with intrathecal injections. HGF's role in promoting motor neuron survival had been vastly reported. Therefore, we investigated whether intrathecal delivery of HGF would have an impact on one of the most common pathologies of ALS: the TDP-43 pathology. Increased astrogliosis, microgliosis and progressive upper motor neuron loss are important consequences of ALS in the motor cortex with TDP-43 pathology. We find that cortex can be modulated via intrathecal injection, and that expression of HGF reduces astrogliosis, microgliosis in the motor cortex, and help restore ongoing UMN degeneration. Our findings not only introduce a novel viral vector for the treatment of ALS, but also demonstrate modulation of motor cortex by intrathecal viral delivery, and that HGF treatment is effective in reducing astrogliosis and microgliosis in the motor cortex of ALS with TDP-43 pathology.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Boram Nho
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Hana Seung
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Benjamin Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Huiwon Park
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Öge Gözütok
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Seunghyun Kim
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Jinil Park
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Sanghyun Ye
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Haneul Lee
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Nayeon Lee
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Shin Yu
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Junghun Lee
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea.
| | - Hande Özdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
17
|
Okamoto Y, Takashima H. The Current State of Charcot-Marie-Tooth Disease Treatment. Genes (Basel) 2023; 14:1391. [PMID: 37510296 PMCID: PMC10379063 DOI: 10.3390/genes14071391] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/20/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Charcot-Marie-Tooth disease (CMT) and associated neuropathies are the most predominant genetically transmitted neuromuscular conditions; however, effective pharmacological treatments have not established. The extensive genetic heterogeneity of CMT, which impacts the peripheral nerves and causes lifelong disability, presents a significant barrier to the development of comprehensive treatments. An estimated 100 loci within the human genome are linked to various forms of CMT and its related inherited neuropathies. This review delves into prospective therapeutic strategies used for the most frequently encountered CMT variants, namely CMT1A, CMT1B, CMTX1, and CMT2A. Compounds such as PXT3003, which are being clinically and preclinically investigated, and a broad array of therapeutic agents and their corresponding mechanisms are discussed. Furthermore, the progress in established gene therapy techniques, including gene replacement via viral vectors, exon skipping using antisense oligonucleotides, splicing modification, and gene knockdown, are appraised. Each of these gene therapies has the potential for substantial advancements in future research.
Collapse
Affiliation(s)
- Yuji Okamoto
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
- Department of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima 890-8544, Japan
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
18
|
Guldiken YC, Malik A, Petropoulos IN, Gad H, Elgassim E, Salivon I, Ponirakis G, Alam U, Malik RA. Where Art Thou O treatment for diabetic neuropathy: the sequel. Expert Rev Neurother 2023; 23:845-851. [PMID: 37602687 DOI: 10.1080/14737175.2023.2247163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/08/2023] [Indexed: 08/22/2023]
Abstract
INTRODUCTION Having lived through a pandemic and witnessed how regulatory approval processes can evolve rapidly; it is lamentable how we continue to rely on symptoms/signs and nerve conduction as primary endpoints for clinical trials in DPN. AREAS COVERED Small (Aδ and C) fibers are key to the genesis of pain, regulate skin blood flow, and play an integral role in the development of diabetic foot ulceration but continue to be ignored. This article challenges the rationale for the FDA insisting on symptoms/signs and nerve conduction as primary endpoints for clinical trials in DPN. EXPERT OPINION Quantitative sensory testing, intraepidermal nerve fiber density, and especially corneal confocal microscopy remain an after-thought, demoted at best to exploratory secondary endpoints in clinical trials of diabetic neuropathy. If pharma are to be given a fighting chance to secure approval for a new therapy for diabetic neuropathy, the FDA needs to reassess the evidence rather than rely on 'opinion' for the most suitable endpoint(s) in clinical trials of diabetic neuropathy.
Collapse
Affiliation(s)
- Yigit Can Guldiken
- Department of Neurology, Kocaeli University Research and Application Hospital, İzmit/Kocaeli, Turkey
| | - Ayesha Malik
- Barts and The London School of Medicine and Dentistry - Medicine, London, UK
| | | | - Hoda Gad
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Einas Elgassim
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Iuliia Salivon
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | | | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Rayaz A Malik
- Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| |
Collapse
|
19
|
Stavrou M, Kleopa KA. CMT1A current gene therapy approaches and promising biomarkers. Neural Regen Res 2023; 18:1434-1440. [PMID: 36571339 PMCID: PMC10075121 DOI: 10.4103/1673-5374.361538] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Charcot-Marie-Tooth neuropathies (CMT) constitute a group of common but highly heterogeneous, non-syndromic genetic disorders affecting predominantly the peripheral nervous system. CMT type 1A (CMT1A) is the most frequent type and accounts for almost ~50% of all diagnosed CMT cases. CMT1A results from the duplication of the peripheral myelin protein 22 (PMP22) gene. Overexpression of PMP22 protein overloads the protein folding apparatus in Schwann cells and activates the unfolded protein response. This leads to Schwann cell apoptosis, dys- and de- myelination and secondary axonal degeneration, ultimately causing neurological disabilities. During the last decades, several different gene therapies have been developed to treat CMT1A. Almost all of them remain at the pre-clinical stage using CMT1A animal models overexpressing PMP22. The therapeutic goal is to achieve gene silencing, directly or indirectly, thereby reversing the CMT1A genetic mechanism allowing the recovery of myelination and prevention of axonal loss. As promising treatments are rapidly emerging, treatment-responsive and clinically relevant biomarkers are becoming necessary. These biomarkers and sensitive clinical evaluation tools will facilitate the design and successful completion of future clinical trials for CMT1A.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kleopas A Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics; Center for Neuromuscular Disorders, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
20
|
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, Huang L, Liu Y. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther 2023; 8:152. [PMID: 37037849 PMCID: PMC10086073 DOI: 10.1038/s41392-023-01400-z] [Citation(s) in RCA: 168] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/19/2023] [Accepted: 02/28/2023] [Indexed: 04/12/2023] Open
Abstract
Vascular complications of diabetes pose a severe threat to human health. Prevention and treatment protocols based on a single vascular complication are no longer suitable for the long-term management of patients with diabetes. Diabetic panvascular disease (DPD) is a clinical syndrome in which vessels of various sizes, including macrovessels and microvessels in the cardiac, cerebral, renal, ophthalmic, and peripheral systems of patients with diabetes, develop atherosclerosis as a common pathology. Pathological manifestations of DPDs usually manifest macrovascular atherosclerosis, as well as microvascular endothelial function impairment, basement membrane thickening, and microthrombosis. Cardiac, cerebral, and peripheral microangiopathy coexist with microangiopathy, while renal and retinal are predominantly microangiopathic. The following associations exist between DPDs: numerous similar molecular mechanisms, and risk-predictive relationships between diseases. Aggressive glycemic control combined with early comprehensive vascular intervention is the key to prevention and treatment. In addition to the widely recommended metformin, glucagon-like peptide-1 agonist, and sodium-glucose cotransporter-2 inhibitors, for the latest molecular mechanisms, aldose reductase inhibitors, peroxisome proliferator-activated receptor-γ agonizts, glucokinases agonizts, mitochondrial energy modulators, etc. are under active development. DPDs are proposed for patients to obtain more systematic clinical care requires a comprehensive diabetes care center focusing on panvascular diseases. This would leverage the advantages of a cross-disciplinary approach to achieve better integration of the pathogenesis and therapeutic evidence. Such a strategy would confer more clinical benefits to patients and promote the comprehensive development of DPD as a discipline.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Yanfei Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Shiwei Liu
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Mengqi Gao
- Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, China
| | - Wenting Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| | - Luqi Huang
- China Center for Evidence-based Medicine of TCM, China Academy of Chinese Medical Sciences, Beijing, 100010, China.
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100091, China.
| |
Collapse
|
21
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
22
|
The Efficacy of HGF/VEGF Gene Therapy for Limb Ischemia in Mice with Impaired Glucose Tolerance: Shift from Angiogenesis to Axonal Growth and Oxidative Potential in Skeletal Muscle. Cells 2022; 11:cells11233824. [PMID: 36497083 PMCID: PMC9737863 DOI: 10.3390/cells11233824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Combined non-viral gene therapy (GT) of ischemia and cardiovascular disease is a promising tool for potential clinical translation. In previous studies our group has developed combined gene therapy by vascular endothelial growth factor 165 (VEGF165) + hepatocyte growth factor (HGF). Our recent works have demonstrated that a bicistronic pDNA that carries both human HGF and VEGF165 coding sequences has a potential for clinical application in peripheral artery disease (PAD). The present study aimed to test HGF/VEGF combined plasmid efficacy in ischemic skeletal muscle comorbid with predominant complications of PAD-impaired glucose tolerance and type 2 diabetes mellitus (T2DM). METHODS Male C57BL mice were housed on low-fat (LFD) or high-fat diet (HFD) for 10 weeks and metabolic parameters including FBG level, ITT, and GTT were evaluated. Hindlimb ischemia induction and plasmid administration were performed at 10 weeks with 3 weeks for post-surgical follow-up. Limb blood flow was assessed by laser Doppler scanning at 7, 14, and 21 days after ischemia induction. The necrotic area of m.tibialis anterior, macrophage infiltration, angio- and neuritogenesis were evaluated in tissue sections. The mitochondrial status of skeletal muscle (total mitochondria content, ETC proteins content) was assessed by Western blotting of muscle lysates. RESULTS At 10 weeks, the HFD group demonstrated impaired glucose tolerance in comparison with the LFD group. HGF/VEGF plasmid injection aggravated glucose intolerance in HFD conditions. Blood flow recovery was not changed by HGF/VEGF plasmid injection either in LFD or HFD conditions. GT in LFD, but not in HFD conditions, enlarged the necrotic area and CD68+ cells infiltration. However, HGF/VEGF plasmid enhanced neuritogenesis and enlarged NF200+ area on muscle sections. In HFD conditions, HGF/VEGF plasmid injection significantly increased mitochondria content and ETC proteins content. CONCLUSIONS The current study demonstrated a significant role of dietary conditions in pre-clinical testing of non-viral GT drugs. HGF/VEGF combined plasmid demonstrated a novel aspect of potential participation in ischemic skeletal muscle regeneration, through regulation of innervation and bioenergetics of muscle. The obtained results made HGF/VEGF combined plasmid a very promising tool for PAD therapy in impaired glucose tolerance conditions.
Collapse
|
23
|
Impairment of peripheral nerve regeneration by insufficient activation of the HGF/c-Met/c-Jun pathway in aged mice. Heliyon 2022; 8:e11411. [DOI: 10.1016/j.heliyon.2022.e11411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022] Open
|
24
|
Gabapentin inhibits the analgesic effects and nerve regeneration process induced by hepatocyte growth factor (HGF) in a peripheral nerve injury model: Implication for the use of VM202 and gabapentinoids for peripheral neuropathy. Mol Cell Neurosci 2022; 122:103767. [PMID: 36007867 DOI: 10.1016/j.mcn.2022.103767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/21/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a multifunctional protein that plays a critical role in the angiogenic, neurotrophic, antifibrotic, and antiapoptotic activities of various cell types. It has been previously reported that intramuscular injection of pCK-HGF-X7 (or VM202), a plasmid DNA designed to express both native isoforms of human HGF (Pyun et al., 2010), significantly reduced the level of neuropathic pain in clinical studies as well as in a variety of animal models. In clinical studies, it has been observed that pCK-HGF-X7 appeared to give much higher pain-relieving effects in subjects not taking pregabalin or gabapentin, α2δ1 calcium channel blockers frequently prescribed for reducing pain in patients with diabetic peripheral neuropathy. In this study, we tested the effects of gabapentin on HGF-mediated pain reduction and nerve regeneration in vivo. Consistent with the data from clinical studies, gabapentin administration inhibited the pain reduction and axon regeneration effects mediated by HGF expression from pCK-HGF-X7. In the context of nerve regenerative effects, treatment with gabapentin or EGTA, a Ca2+ chelator, inhibited HGF-mediated axon outgrowth of injured sciatic nerves in vivo. Taken together, i.m. injection of HGF-encoding plasmid DNA ameliorated pain symptoms and enhanced the regeneration of injured nerves, and these therapeutic effects of HGF were significantly hindered by gabapentin treatment, suggesting the possible involvement of Ca2+ in the pro-regenerative activities of native HGF derived from treatment with pCK-HGF-X7.
Collapse
|
25
|
Therapeutic delivery of nucleic acids for skin wound healing. Ther Deliv 2022; 13:339-358. [PMID: 35975470 DOI: 10.4155/tde-2022-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Though wound care has advanced, treating chronic wounds remains a challenge and there are many clinical issues that must be addressed. Gene therapy is a recent approach to treating chronic wounds that remains in its developmental stage. The limited reports available describe the therapeutic applications of various forms of nucleic acid delivery for treating chronic wounds, including DNA, mRNA, siRNA, miRNA and so on. Though these bioactive molecules represent great therapeutic potential, sustaining their bioactivity in the wound bed is a challenge. To overcome this hurdle, delivery systems are also being widely investigated. In this review, nucleic acid-based therapy and its delivery for treating chronic wounds is discussed in detail.
Collapse
|
26
|
Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int J Mol Sci 2022; 23:ijms23094824. [PMID: 35563214 PMCID: PMC9101723 DOI: 10.3390/ijms23094824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/19/2022] Open
Abstract
Gene therapy is a revolutionary, cutting-edge approach to permanently ameliorate or amend many neuromuscular diseases by targeting their genetic origins. Motor neuron diseases and muscular dystrophies, whose genetic causes are well known, are the frontiers of this research revolution. Several genetic treatments, with diverse mechanisms of action and delivery methods, have been approved during the past decade and have demonstrated remarkable results. However, despite the high number of genetic treatments studied preclinically, those that have been advanced to clinical trials are significantly fewer. The most clinically advanced treatments include adeno-associated virus gene replacement therapy, antisense oligonucleotides, and RNA interference. This review provides a comprehensive overview of the advanced gene therapies for motor neuron diseases (i.e., amyotrophic lateral sclerosis and spinal muscular atrophy) and muscular dystrophies (i.e., Duchenne muscular dystrophy, limb-girdle muscular dystrophy, and myotonic dystrophy) tested in clinical trials. Emphasis has been placed on those methods that are a few steps away from their authoritative approval.
Collapse
|
27
|
Puhl DL, Mohanraj D, Nelson DW, Gilbert RJ. Designing electrospun fiber platforms for efficient delivery of genetic material and genome editing tools. Adv Drug Deliv Rev 2022; 183:114161. [PMID: 35183657 PMCID: PMC9724629 DOI: 10.1016/j.addr.2022.114161] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/29/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
Electrospun fibers are versatile biomaterial platforms with great potential to support regeneration. Electrospun fiber characteristics such as fiber diameter, degree of alignment, rate of degradation, and surface chemistry enable the creation of unique, tunable scaffolds for various drug or gene delivery applications. The delivery of genetic material and genome editing tools via viral and non-viral vectors are approaches to control cellular protein production. However, immunogenicity, off-target effects, and low delivery efficiencies slow the progression of gene delivery strategies to clinical settings. The delivery of genetic material from electrospun fibers overcomes such limitations by allowing for localized, tunable delivery of genetic material. However, the process of electrospinning is harsh, and care must be taken to retain genetic material bioactivity. This review presents an up-to-date summary of strategies to incorporate genetic material onto or within electrospun fiber platforms to improve delivery efficiency and enhance the regenerative potential of electrospun fibers for various tissue engineering applications.
Collapse
Affiliation(s)
- Devan L Puhl
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Divya Mohanraj
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Derek W Nelson
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| | - Ryan J Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15th Street, Troy, NY 12180, USA.
| |
Collapse
|
28
|
Nho B, Ko KR, Kim S, Lee J. Intramuscular injection of a plasmid DNA vector expressing hepatocyte growth factor (HGF) ameliorated pain symptoms by controlling the expression of pro-inflammatory cytokines in the dorsal root ganglion. Biochem Biophys Res Commun 2022; 607:60-66. [PMID: 35366545 DOI: 10.1016/j.bbrc.2022.03.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
Abstract
Hepatocyte growth factor (HGF) is a secretory protein that is involved in various biological activities such as angiogenesis, neuroprotection, and anti-inflammatory effects. Intramuscular injection of an HGF-encoding plasmid DNA (pCK-HGF-X7) has been shown to produce pain-relieving effects in a rodent model and patients with neuropathic pain.To further investigate the underlying mechanism, we investigated the anti-inflammatory effects of HGF in the context of neuropathic pain. Consistent with previous data, intramuscular injection of pCK-HGF-X7 showed pain relieving effects up to 8 weeks and pharmacological blockade of the c-Met receptor hindered this effect, which suggest that the analgesic effect was c-Met receptor-dependent. At the histological level, macrophage infiltration in the dorsal root ganglion (DRG) was significantly decreased in the pCK-HGF-X7 injected group. Moreover, HGF treatment significantly downregulated the LPS-mediated induction of pro-inflammatory cytokines in primary cultured DRG neurons. Taken together, these data suggest that HGF-encoding plasmid DNA attenuates neuropathic pain via controlling the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Boram Nho
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Kyeong Ryang Ko
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghun Lee
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
29
|
Bönhof GJ, Herder C, Ziegler D. Diagnostic Tools, Biomarkers, and Treatments in Diabetic polyneuropathy and Cardiovascular Autonomic Neuropathy. Curr Diabetes Rev 2022; 18:e120421192781. [PMID: 33845748 DOI: 10.2174/1573399817666210412123740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The various manifestations of diabetic neuropathy, including distal symmetric sensorimotor polyneuropathy (DSPN) and cardiovascular autonomic neuropathy (CAN), are among the most prevalent chronic complications of diabetes. Major clinical complications of diabetic neuropathies, such as neuropathic pain, chronic foot ulcers, and orthostatic hypotension, are associated with considerable morbidity, increased mortality, and diminished quality of life. Despite the substantial individual and socioeconomic burden, the strategies to diagnose and treat diabetic neuropathies remain insufficient. This review provides an overview of the current clinical aspects and recent advances in exploring local and systemic biomarkers of both DSPN and CAN assessed in human studies (such as biomarkers of inflammation and oxidative stress) for better understanding of the underlying pathophysiology and for improving early detection. Current therapeutic options for DSPN are (I) causal treatment, including lifestyle modification, optimal glycemic control, and multifactorial risk intervention, (II) pharmacotherapy derived from pathogenetic concepts, and (III) analgesic treatment against neuropathic pain. Recent advances in each category are discussed, including non-pharmacological approaches, such as electrical stimulation. Finally, the current therapeutic options for cardiovascular autonomic complications are provided. These insights should contribute to a broader understanding of the various manifestations of diabetic neuropathies from both the research and clinical perspectives.
Collapse
Affiliation(s)
- Gidon J Bönhof
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Department of Endocrinology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
30
|
Abstract
Diabetic neuropathy is a neurodegenerative disorder that may alter both the somatic and autonomic peripheral nervous systems in the context of diabetes mellitus (DM). It is a prevalent and burdensome chronic complication of DM, that requires timely management. Optimized glycemic control (mainly for type 1 DM), multifactorial intervention (mainly for type 2 DM), with lifestyle intervention/physical exercise, and weight loss represent the basis of management for diabetic distal symmetrical polyneuropathy, and should be implemented early in the disease course. Despite better understanding of the pathogenetic mechanisms of diabetic peripheral neuropathy, there is still a stringent need for more pathogenetic-based agents that would significantly modify the natural history of the disease. The paper reviews the available drugs and current recommendations for the management of distal symmetrical polyneuropathy, including pain management, and for diabetic autonomic neuropathy. Evaluation of drug combinations that would perhaps be more efficient in slowing the progression of the disease or even reversing it, and that would provide a better pain management is still needed.
Collapse
Affiliation(s)
- Simona Cernea
- Department M3/Internal Medicine I, "George Emil Palade" University of Medicine, Pharmacy, Science, and Technology of Târgu Mureş, Târgu Mureş, Romania; Diabetes, Nutrition and Metabolic Diseases Outpatient Unit, Emergency County Clinical Hospital, Târgu Mureş, Romania.
| | - Itamar Raz
- Diabetes Unit, Hadassah Hebrew University Hospital, Jerusalem, Israel
| |
Collapse
|
31
|
Stavrou M, Sargiannidou I, Georgiou E, Kagiava A, Kleopa KA. Emerging Therapies for Charcot-Marie-Tooth Inherited Neuropathies. Int J Mol Sci 2021; 22:6048. [PMID: 34205075 PMCID: PMC8199910 DOI: 10.3390/ijms22116048] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuropathies known as Charcot-Marie-Tooth (CMT) disease are genetically heterogeneous disorders affecting the peripheral nerves, causing significant and slowly progressive disability over the lifespan. The discovery of their diverse molecular genetic mechanisms over the past three decades has provided the basis for developing a wide range of therapeutics, leading to an exciting era of finding treatments for this, until now, incurable group of diseases. Many treatment approaches, including gene silencing and gene replacement therapies, as well as small molecule treatments are currently in preclinical testing while several have also reached clinical trial stage. Some of the treatment approaches are disease-specific targeted to the unique disease mechanism of each CMT form, while other therapeutics target common pathways shared by several or all CMT types. As promising treatments reach the stage of clinical translation, optimal outcome measures, novel biomarkers and appropriate trial designs are crucial in order to facilitate successful testing and validation of novel treatments for CMT patients.
Collapse
Affiliation(s)
- Marina Stavrou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Irene Sargiannidou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Elena Georgiou
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Alexia Kagiava
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
| | - Kleopas A. Kleopa
- Neuroscience Department, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus; (M.S.); (I.S.); (E.G.); (A.K.)
- Center for Neuromuscular Diseases, The Cyprus Institute of Neurology and Genetics, Cyprus School of Molecular Medicine, Nicosia 2371, Cyprus
| |
Collapse
|
32
|
Lee N, Lee SH, Lee J, Lee MY, Lim J, Kim S, Kim S. Hepatocyte growth factor is necessary for efficient outgrowth of injured peripheral axons in in vitro culture system and in vivo nerve crush mouse model. Biochem Biophys Rep 2021; 26:100973. [PMID: 33718632 PMCID: PMC7933716 DOI: 10.1016/j.bbrep.2021.100973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 11/12/2022] Open
Abstract
Hepatocyte growth factor (HGF) is a neurotrophic factor and its role in peripheral nerves has been relatively unknown. In this study, biological functions of HGF and its receptor c-met have been investigated in the context of regeneration of damaged peripheral nerves. Axotomy of the peripheral branch of sensory neurons from embryonic dorsal root ganglia (DRG) resulted in the increased protein levels of HGF and phosphorylated c-met. When the neuronal cultures were treated with a pharmacological inhibitor of c-met, PHA665752, the length of axotomy-induced outgrowth of neurite was significantly reduced. On the other hand, the addition of recombinant HGF proteins to the neuronal culture facilitated axon outgrowth. In the nerve crush mouse model, the protein level of HGF was increased around the injury site by almost 5.5-fold at 24 h post injury compared to control mice and was maintained at elevated levels for another 6 days. The amount of phosphorylated c-met receptor in sciatic nerve was also observed to be higher than control mice. When PHA665752 was locally applied to the injury site of sciatic nerve, axon outgrowth and injury mediated induction of cJun protein were effectively inhibited, indicating the functional involvement of HGF/c-met pathway in the nerve regeneration process. When extra HGF was exogenously provided by intramuscular injection of plasmid DNA expressing HGF, axon outgrowth from damaged sciatic nerve and cJun expression level were enhanced. Taken together, these results suggested that HGF/c-met pathway plays important roles in axon outgrowth by directly interacting with sensory neurons and thus HGF might be a useful tool for developing therapeutics for peripheral neuropathy. In in vitro primary eDRGs, axotomy-induced HGF/c-met pathway enhanced the neurite outgrowth process. Nerve injury induced the expression of HGF, consequently leading to the activation of c-met in peripheral axons. HGF/c-met pathway played an important role in the regeneration process of injured peripheral nerves. Additional supply of HGF, in the form of plasmid DNA, enhanced the regeneration of damaged peripheral nerves.
Collapse
Affiliation(s)
- Nayeon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.,Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Sang Hwan Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Junghun Lee
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Mi-Young Lee
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Jaegook Lim
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Subin Kim
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| | - Sunyoung Kim
- Division of Gene Therapy, Helixmith Co Ltd, Seoul, 07794, South Korea
| |
Collapse
|