1
|
Hoch M, Huth F, Manley PW, Loisios-Konstantinidis I, Combes FP, Li YF, Fu Y, Sy SKB, Obourn V, Chakraborty A, Hourcade-Potelleret F. Clinical Pharmacology of Asciminib: A Review. Clin Pharmacokinet 2024:10.1007/s40262-024-01428-6. [PMID: 39467980 DOI: 10.1007/s40262-024-01428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2024] [Indexed: 10/30/2024]
Abstract
Asciminib is a first-in-class allosteric inhibitor of the kinase activity of BCR::ABL1, specifically targeting the ABL myristoyl pocket (STAMP). This review focuses on the pharmacokinetic (PK) and pharmacodynamic data of asciminib, which is approved at a total daily dose of 80 mg for the treatment of adult patients with chronic myeloid leukemia in chronic phase who are either resistant or intolerant to ≥ 2 tyrosine kinase inhibitors or those harboring the T315I mutation (at a dose of 200 mg twice daily). Asciminib is predicted to be almost completely absorbed from the gut, with an absolute bioavailability (F) of approximately 73%. It should be administered in a fasted state, as food (particularly high-fat meals) reduces exposure. Asciminib displays a slightly greater than dose-proportional increase in exposure, with no time-dependent changes in PK observed following repeated dosing. This drug shows low clearance (6.31 L/h), with a moderate volume of distribution (111 L) and high human plasma protein binding (97.3%). The apparent terminal elimination half-life (t1/2) across studies was estimated to be between 7 and 15 h. The PK of asciminib is not substantially affected by body weight, age, gender, race, or renal or hepatic impairment. Asciminib is primarily metabolized via CYP3A4-mediated oxidation (36.0%) and UGT2B7- and UGT2B17-mediated glucuronidation (13.3% and 7.8%, respectively); biliary secretion via breast cancer resistance protein contributes to about 31.1% to total systemic clearance, which is mainly through hepatic metabolism and biliary secretion through the fecal pathway, with renal excretion playing a minor role. The potential for PK drug interaction for asciminib both as a victim and a perpetrator has been summarized here based on clinical and predicted drug-drug interaction studies. Robust exposure-response models characterized asciminib exposure-efficacy and exposure-safety relationships. In patients without the T315I mutation, the exposure-efficacy analysis of the time course of BCR::ABL1IS percentages highlighted the existence of a slightly positive, albeit not clinically significant, relationship. Higher exposure was required for efficacy in patients harboring the T315I mutation compared with those who did not. The exposure-safety relationship analysis showed no apparent association between exposure and adverse events of interest over the broad range of exposure or dose levels investigated. Asciminib has also been shown to have no clinically relevant effect on cardiac repolarization. Here, we review the clinical pharmacology data available to date for asciminib that supported its clinical development program and regulatory applications.
Collapse
Affiliation(s)
- Matthias Hoch
- Novartis Biomedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland.
| | - Felix Huth
- Novartis Biomedical Research, Fabrikstrasse 2, 4056, Basel, Switzerland
| | | | | | | | - Ying Fei Li
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | - Yunlin Fu
- Novartis Pharmaceuticals, East Hanover, NJ, USA
| | | | | | | | | |
Collapse
|
2
|
Shen Y, Chen X, Wu H, Xia H, Xu RA. Effects of the antitumor drugs adagrasib and asciminib on apixaban metabolism in vitro and in vivo. Chem Biol Interact 2024; 399:111146. [PMID: 39002878 DOI: 10.1016/j.cbi.2024.111146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Apixaban is an oral anticoagulant that directly inhibits the target Factor Xa (FXa). In this study, we focused on the in vivo and in vitro effects of adagrasib and asciminib on apixaban metabolism, to discover potential drug-drug interactions (DDI) and explore their inhibitory mechanisms. The levels of apixaban and its metabolite, O-desmethyl-apixaban (M2), were determined by ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). In vitro evaluation, the maximum half inhibitory concentration (IC50) of adagrasib in rat liver microsomes (RLM) and human liver microsomes (HLM) against apixaban was 7.99 μM and 117.40 μM, respectively. The IC50 value of asciminib against apixaban in RLM and HLM was 4.28 μM and 18.42 μM, respectively. The results of the analysis on inhibition mechanisms showed that adagrasib inhibited the metabolism of apixaban through a non-competitive mechanism, while asciminib inhibited the metabolism of apixaban through a mixed mechanism. Moreover, the interaction of apixaban with adagrasib and asciminib in Sprague-Dawley (SD) rats was also investigated. It was found that the pharmacokinetic characteristics of apixaban were significantly changed when combined with these two antitumor drugs, where AUC(0-t), AUC(0-∞), t1/2, Tmax, and Cmax were increased, while CLz/F was significantly decreased. But both drugs did not appear to affect the metabolism of M2 in a significant way. Consistent results from in vitro and in vivo demonstrated that both adagrasib and asciminib inhibited the metabolism of apixaban. It provided reference data for the future clinical individualization of apixaban.
Collapse
Affiliation(s)
- Yuxin Shen
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohai Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hualu Wu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hailun Xia
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ren-Ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
3
|
Holzmayer SJ, Kauer J, Mauermann J, Roider T, Märklin M. Asciminib Maintains Antibody-Dependent Cellular Cytotoxicity against Leukemic Blasts. Cancers (Basel) 2024; 16:1288. [PMID: 38610966 PMCID: PMC11010908 DOI: 10.3390/cancers16071288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
B cell acute lymphoblastic leukemia (B-ALL) is characterized by an accumulation of malignant precursor cells. Treatment consists of multiagent chemotherapy followed by allogeneic stem cell transplantation in high-risk patients. In addition, patients bearing the BCR-ABL1 fusion gene receive concomitant tyrosine kinase inhibitor (TKI) therapy. On the other hand, monoclonal antibody therapy is increasingly used in both clinical trials and real-world settings. The introduction of rituximab has improved the outcomes in CD20 positive cases. Other monoclonal antibodies, such as tafasitamab (anti-CD19), obinutuzumab (anti-CD20) and epratuzumab (anti-CD22) have been tested in trials (NCT05366218, NCT04920968, NCT00098839). The efficacy of monoclonal antibodies is based, at least in part, on their ability to induce antibody-dependent cellular cytotoxicity (ADCC). Combination treatments, e.g., chemotherapy and TKI, should therefore be screened for potential interference with ADCC. Here, we report on in vitro data using BCR-ABL1 positive and negative B-ALL cell lines treated with rituximab and TKI. NK cell activation, proliferation, degranulation, cytokine release and tumor cell lysis were analyzed. In contrast to ATP site inhibitors such as dasatinib and ponatinib, the novel first-in-class selective allosteric ABL myristoyl pocket (STAMP) inhibitor asciminib did not significantly impact ADCC in our settings. Our results suggest that asciminib should be considered in clinical trials.
Collapse
Affiliation(s)
- Samuel J. Holzmayer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tübingen, Germany
| | - Joseph Kauer
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner Site Tübingen, 72076 Tübingen, Germany
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69117 Heidelberg, Germany;
- European Molecular Biology Laboratory (EMBL), 69116 Heidelberg, Germany
| | - Jonas Mauermann
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tübingen, Germany
| | - Tobias Roider
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69117 Heidelberg, Germany;
- European Molecular Biology Laboratory (EMBL), 69116 Heidelberg, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, 72076 Tübingen, Germany; (S.J.H.)
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, Eberhard Karls University, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Cheng F, Wang H, Li W, Zhang Y. Clinical pharmacokinetics and drug-drug interactions of tyrosine-kinase inhibitors in chronic myeloid leukemia: A clinical perspective. Crit Rev Oncol Hematol 2024; 195:104258. [PMID: 38307392 DOI: 10.1016/j.critrevonc.2024.104258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/04/2024] Open
Abstract
In the past decade, numerous tyrosine kinase inhibitors (TKIs) have been introduced in the treatment of chronic myeloid leukemia. Given the significant interpatient variability in TKIs pharmacokinetics, potential drug-drug interactions (DDIs) can greatly impact patient therapy. This review aims to discuss the pharmacokinetic characteristics of TKIs, specifically focusing on their absorption, distribution, metabolism, and excretion profiles. Additionally, it provides a comprehensive overview of the utilization of TKIs in special populations such as the elderly, children, and patients with liver or kidney dysfunction. We also highlight known or suspected DDIs between TKIs and other drugs, highlighting various clinically relevant interactions. Moreover, specific recommendations are provided to guide haemato-oncologists, oncologists, and clinical pharmacists in managing DDIs during TKI treatment in daily clinical practice.
Collapse
Affiliation(s)
- Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China
| | - Hongxiang Wang
- Department of Hematology, the Central Hospital of Wuhan, 430014, China
| | - Weiming Li
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan 430022, China.
| |
Collapse
|
5
|
Hijiya N, Mauro MJ. Asciminib in the Treatment of Philadelphia Chromosome-Positive Chronic Myeloid Leukemia: Focus on Patient Selection and Outcomes. Cancer Manag Res 2023; 15:873-891. [PMID: 37641687 PMCID: PMC10460573 DOI: 10.2147/cmar.s353374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have significantly changed the treatment of chronic myeloid leukemia (CML) and improved outcomes for patients with CML in chronic phase (CML-CP) and accelerated phase (AP). Now armed with numerous effective therapeutic options, clinicians must consider various patient- and disease-specific factors when selecting the most appropriate TKI across lines of therapy. While most patients with CML expected to have a near-normal life expectancy due to the success of TKIs, emphasis has expanded beyond response and survival to include factors like quality of life, tolerability, and long-term toxicity management. Importantly, a subset of patients can achieve sustained deep molecular response and can attain treatment-free remission. Despite these successes, unmet needs remain related to CML treatment, including the persistent challenge of treatment resistance and intolerance, broadening treatment options for patients with resistance mutations or serious comorbidities, and focus on specific populations such as children and young adults. In particular, the only previously available treatments for patients with CML-CP with the T315I mutation were ponatinib, olverembatinib (exclusively approved for use in China at the time of this writing), omacetaxine, and hematopoietic stem cell transplantation. Asciminib has entered the CML treatment landscape as a new option for adult patients with CML-CP who have received ≥2 prior TKIs or those with the T315I mutation. Asciminib's unique mechanism of action, Specifically Targeting the ABL Myristoyl Pocket, sets it apart from traditional adenosine triphosphate-competitive TKIs. While asciminib may overcome unmet needs for patients with CML-CP and continues to be studied in other novel settings, guidance on how to integrate asciminib in treatment algorithms is needed. This review focuses on clinical data and how asciminib can overcome current unmet needs, discusses how to individualize patient selection, and highlights future directions to investigate asciminib in earlier lines of therapy and in children and adolescents.
Collapse
Affiliation(s)
- Nobuko Hijiya
- Division of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael J Mauro
- Myeloproliferative Neoplasms Program, Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Asciminib: first FDA approved allosteric inhibitor of BCR-ABL1 for the treatment of chronic myeloid leukemia. Med Chem Res 2023. [DOI: 10.1007/s00044-022-03011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
7
|
Li YF, Combes FP, Hoch M, Lorenzo S, Sy SKB, Ho YY. Population Pharmacokinetics of Asciminib in Tyrosine Kinase Inhibitor-Treated Patients with Philadelphia Chromosome-Positive Chronic Myeloid Leukemia in Chronic and Acute Phases. Clin Pharmacokinet 2022; 61:1393-1403. [PMID: 35764773 DOI: 10.1007/s40262-022-01148-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Asciminib, a first-in-class, highly potent and specific ABL/BCR-ABL1 inhibitor, has shown superior efficacy compared to bosutinib in patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase, treated with two or more tyrosine kinase inhibitors. This study aimed to describe pharmacokinetic (PK) properties of asciminib and to identify clinically relevant covariates impacting its exposure. METHODS A population PK (PopPK) model was developed using a two-compartment model with delayed first-order absorption and elimination. The analysis included PK data from two clinical studies (Phases 1 and 3) involving 353 patients, with total daily dose of asciminib in the range of 20-400 mg. RESULTS The nominal total daily dose was incorporated as a structural covariate on clearance (CL), and body weight (BW) was included as a structural covariate via allometric scaling on CL and central volume. Renal function and formulation were included as statistically significant covariates on CL and absorption (ka), respectively. The simulation results revealed a modest but clinically non-significant effect of baseline BW and renal function on ka. Correlations between covariates, such as baseline demographics and disease characteristics, heavy smoking status, hepatic function, and T315I mutation status, were not statistically significant with respect to CL, and they were not incorporated in the final model. Additionally, the final model-based simulations demonstrated comparable exposure and CL for asciminib 40 mg twice daily and 80 mg once daily (an alternative regimen not studied in the Phase 3 trial), as well as similar PK properties in patients with and without the T315I mutation. CONCLUSIONS The final PopPK model adequately characterized the PK properties of asciminib and assessed the impact of key covariates on its exposure. The model corroborates the use of the approved asciminib dose of 80 mg total daily dose as 40 mg twice daily, and supports the use of 80 mg once daily as an alternative dose regimen to facilitate patient's compliance. TRIAL REGISTRATION NUMBER [DATE OF REGISTRATION]: First-in-human (CABL001X2101, Phase 1), ClinicalTrials.gov identifier: NCT02081378 [28 February 2014]; ASCEMBL (CABL001A2301, Phase 3), ClinicalTrials.gov identifier: NCT03106779 [10 April 2017].
Collapse
Affiliation(s)
- Ying Fei Li
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA.
| | | | - Matthias Hoch
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | | | - Sherwin K B Sy
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| | - Yu-Yun Ho
- Novartis Pharmaceutical Corporation, East Hanover, New Jersey, USA
| |
Collapse
|