1
|
Esteban-Rodríguez I, López-Muñoz S, Blasco-Santana L, Mejías-Bielsa J, Gordillo CH, Jiménez-Heffernan JA. Cytological features of diffuse and circumscribed gliomas. Cytopathology 2024; 35:534-544. [PMID: 37668299 DOI: 10.1111/cyt.13300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023]
Abstract
The current World Health Organization classification of gliomas is based on morphological, genetic, and molecular parameters. In this review, we intend to present the most relevant cytological features of these tumours, with a particular focus on their analysis during intraoperative studies. Rapid diagnosis is required in this context, and at present it is not possible to evaluate the genetic or molecular profile of a tumour intraoperatively. New terminology and diagnostic parameters have been introduced, but the essence of intraoperative recognition remains the same. The main challenge in astrocytoma IDH-mutant, grade 2 is recognising the tissue as neoplastic. Since glioma grades 3 and 4 are assigned based on histological and genetic variables that are not necessarily measurable on cytology, the term high-grade glioma is often used for intraoperative diagnosis. Oligodendroglioma, IDH-mutant and 1p/19q-codeleted shows peculiar cytological findings as well as the common subtypes of glioblastoma IDH-wildtype (giant cell, epithelioid, gliosarcoma and small cell). Many of the paediatric-type-diffuse gliomas have been described very recently and there are no cytological reports of proven cases. Finally, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, subependymal giant cell astrocytoma, chordoid glioma, and astroblastoma MN1-altered constitute the group of circumscribed astrocytic gliomas. They are remarkable entities that the pathologist must be able to recognise since most are low-grade neoplasms that can show atypical morphological features.
Collapse
Affiliation(s)
| | | | - Luis Blasco-Santana
- Department of Pathology, Hospital Universitario Hospital del Niño Jesús, Madrid, Spain
| | - Jaime Mejías-Bielsa
- Department of Pathology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Carlos H Gordillo
- Department of Pathology, Hospital Universitario de La Princesa, Madrid, Spain
| | | |
Collapse
|
2
|
Kim AE, Lou KW, Giobbie-Hurder A, Chang K, Gidwani M, Hoebel K, Patel JB, Cleveland MC, Singh P, Bridge CP, Ahmed SR, Bearce BA, Liu W, Fuster-Garcia E, Lee EQ, Lin NU, Overmoyer B, Wen PY, Nayak L, Cohen JV, Dietrich J, Eichler A, Heist R, Krop I, Lawrence D, Ligibel J, Tolaney S, Mayer E, Winer E, Perrino CM, Summers EJ, Mahar M, Oh K, Shih HA, Cahill DP, Rosen BR, Yen YF, Kalpathy-Cramer J, Martinez-Lage M, Sullivan RJ, Brastianos PK, Emblem KE, Gerstner ER. Abnormal vascular structure and function within brain metastases is linked to pembrolizumab resistance. Neuro Oncol 2024; 26:965-974. [PMID: 38070147 PMCID: PMC11066943 DOI: 10.1093/neuonc/noad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND We recently conducted a phase 2 trial (NCT028865685) evaluating intracranial efficacy of pembrolizumab for brain metastases (BM) of diverse histologies. Our study met its primary efficacy endpoint and illustrates that pembrolizumab exerts promising activity in a select group of patients with BM. Given the importance of aberrant vasculature in mediating immunosuppression, we explored the relationship between immune checkpoint inhibitor (ICI) efficacy and vascular architecture in the hopes of identifying potential mechanisms of intracranial ICI response or resistance for BM. METHODS Using Vessel Architectural Imaging, a histologically validated quantitative metric for in vivo tumor vascular physiology, we analyzed dual-echo DSC/DCE MRI for 44 patients on trial. Tumor and peri-tumor cerebral blood volume/flow, vessel size, arterial and venous dominance, and vascular permeability were measured before and after treatment with pembrolizumab. RESULTS BM that progressed on ICI were characterized by a highly aberrant vasculature dominated by large-caliber vessels. In contrast, ICI-responsive BM possessed a more structurally balanced vasculature consisting of both small and large vessels, and there was a trend toward a decrease in under-perfused tissue, suggesting a reversal of the negative effects of hypoxia. In the peri-tumor region, the development of smaller blood vessels, consistent with neo-angiogenesis, was associated with tumor growth before radiographic evidence of contrast enhancement on anatomical MRI. CONCLUSIONS This study, one of the largest functional imaging studies for BM, suggests that vascular architecture is linked with ICI efficacy. Studies identifying modulators of vascular architecture, and effects on immune activity, are warranted and may inform future combination treatments.
Collapse
Affiliation(s)
- Albert E Kim
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kevin W Lou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Anita Giobbie-Hurder
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ken Chang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mishka Gidwani
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Katharina Hoebel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jay B Patel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mason C Cleveland
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Praveer Singh
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Christopher P Bridge
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Syed Rakin Ahmed
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Graduate Program in Biophysics, Harvard University, Cambridge, Massachusetts, USA
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Benjamin A Bearce
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - William Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elies Fuster-Garcia
- Department of Physics and Computational Radiology, Division of Radiology & Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Instituto Universitario de Tecnologías de la Información y Comunicaciones, Universitat Politècnica de València, València, Spain
| | - Eudocia Q Lee
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Nancy U Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Beth Overmoyer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Lakshmi Nayak
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Justine V Cohen
- Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jorg Dietrich
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - April Eichler
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca Heist
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Ian Krop
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Donald Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jennifer Ligibel
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara Tolaney
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Erica Mayer
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Winer
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Carmen M Perrino
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Elizabeth J Summers
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Maura Mahar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Oh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Helen A Shih
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel P Cahill
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jayashree Kalpathy-Cramer
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Kyrre E Emblem
- Department of Physics and Computational Radiology, Division of Radiology & Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Elizabeth R Gerstner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Karlberg A, Pedersen LK, Vindstad BE, Skjulsvik AJ, Johansen H, Solheim O, Skogen K, Kvistad KA, Bogsrud TV, Myrmel KS, Giskeødegård GF, Ingebrigtsen T, Berntsen EM, Eikenes L. Diagnostic accuracy of anti-3-[ 18F]-FACBC PET/MRI in gliomas. Eur J Nucl Med Mol Imaging 2024; 51:496-509. [PMID: 37776502 PMCID: PMC10774221 DOI: 10.1007/s00259-023-06437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE The primary aim was to evaluate whether anti-3-[18F]FACBC PET combined with conventional MRI correlated better with histomolecular diagnosis (reference standard) than MRI alone in glioma diagnostics. The ability of anti-3-[18F]FACBC to differentiate between molecular and histopathological entities in gliomas was also evaluated. METHODS In this prospective study, patients with suspected primary or recurrent gliomas were recruited from two sites in Norway and examined with PET/MRI prior to surgery. Anti-3-[18F]FACBC uptake (TBRpeak) was compared to histomolecular features in 36 patients. PET results were then added to clinical MRI readings (performed by two neuroradiologists, blinded for histomolecular results and PET data) to assess the predicted tumor characteristics with and without PET. RESULTS Histomolecular analyses revealed two CNS WHO grade 1, nine grade 2, eight grade 3, and 17 grade 4 gliomas. All tumors were visible on MRI FLAIR. The sensitivity of contrast-enhanced MRI and anti-3-[18F]FACBC PET was 61% (95%CI [45, 77]) and 72% (95%CI [58, 87]), respectively, in the detection of gliomas. Median TBRpeak was 7.1 (range: 1.4-19.2) for PET positive tumors. All CNS WHO grade 1 pilocytic astrocytomas/gangliogliomas, grade 3 oligodendrogliomas, and grade 4 glioblastomas/astrocytomas were PET positive, while 25% of grade 2-3 astrocytomas and 56% of grade 2-3 oligodendrogliomas were PET positive. Generally, TBRpeak increased with malignancy grade for diffuse gliomas. A significant difference in PET uptake between CNS WHO grade 2 and 4 gliomas (p < 0.001) and between grade 3 and 4 gliomas (p = 0.002) was observed. Diffuse IDH wildtype gliomas had significantly higher TBRpeak compared to IDH1/2 mutated gliomas (p < 0.001). Adding anti-3-[18F]FACBC PET to MRI improved the accuracy of predicted glioma grades, types, and IDH status, and yielded 13.9 and 16.7 percentage point improvement in the overall diagnoses for both readers, respectively. CONCLUSION Anti-3-[18F]FACBC PET demonstrated high uptake in the majority of gliomas, especially in IDH wildtype gliomas, and improved the accuracy of preoperatively predicted glioma diagnoses. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT04111588, URL: https://clinicaltrials.gov/study/NCT04111588.
Collapse
Affiliation(s)
- Anna Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway.
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medical and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Skogen
- Department of Radiology and Nuclear Medicine, Oslo University Hospitals, Oslo, Norway
| | - Kjell Arne Kvistad
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Trond Velde Bogsrud
- PET-Centre, University Hospital of North Norway, Tromsø, Norway
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Guro F Giskeødegård
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Kim AE, Lou KW, Giobbie-Hurder A, Chang K, Gidwani M, Hoebel K, Patel JB, Cleveland MC, Singh P, Bridge CP, Ahmed SR, Bearce BA, Liu W, Fuster-Garcia E, Lee EQ, Lin NU, Overmoyer B, Wen PY, Nayak L, Cohen JV, Dietrich J, Eichler A, Heist R, Krop I, Lawrence D, Ligibel J, Tolaney S, Mayer E, Winer E, Perrino CM, Summers EJ, Mahar M, Oh K, Shih HA, Cahill DP, Rosen BR, Yen YF, Kalpathy-Cramer J, Martinez-Lage M, Sullivan RJ, Brastianos PK, Emblem KE, Gerstner ER. Structural and functional vascular dysfunction within brain metastases is linked to pembrolizumab inefficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554868. [PMID: 37693537 PMCID: PMC10491098 DOI: 10.1101/2023.08.25.554868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Structurally and functionally aberrant vasculature is a hallmark of tumor angiogenesis and treatment resistance. Given the synergistic link between aberrant tumor vasculature and immunosuppression, we analyzed perfusion MRI for 44 patients with brain metastases (BM) undergoing treatment with pembrolizumab. To date, vascular-immune communication, or the relationship between immune checkpoint inhibitor (ICI) efficacy and vascular architecture, has not been well-characterized in human imaging studies. We found that ICI-responsive BM possessed a structurally balanced vascular makeup, which was linked to improved vascular efficiency and an immune-stimulatory microenvironment. In contrast, ICI-resistant BM were characterized by a lack of immune cell infiltration and a highly aberrant vasculature dominated by large-caliber vessels. Peri-tumor region analysis revealed early functional changes predictive of ICI resistance before radiographic evidence on conventional MRI. This study was one of the largest functional imaging studies for BM and establishes a foundation for functional studies that illuminate the mechanisms linking patterns of vascular architecture with immunosuppression, as targeting these aspects of cancer biology may serve as the basis for future combination treatments.
Collapse
|
5
|
Single-cell spatial immune landscapes of primary and metastatic brain tumours. Nature 2023; 614:555-563. [PMID: 36725935 PMCID: PMC9931580 DOI: 10.1038/s41586-022-05680-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/22/2022] [Indexed: 02/03/2023]
Abstract
Single-cell technologies have enabled the characterization of the tumour microenvironment at unprecedented depth and have revealed vast cellular diversity among tumour cells and their niche. Anti-tumour immunity relies on cell-cell relationships within the tumour microenvironment1,2, yet many single-cell studies lack spatial context and rely on dissociated tissues3. Here we applied imaging mass cytometry to characterize the immunological landscape of 139 high-grade glioma and 46 brain metastasis tumours from patients. Single-cell analysis of more than 1.1 million cells across 389 high-dimensional histopathology images enabled the spatial resolution of immune lineages and activation states, revealing differences in immune landscapes between primary tumours and brain metastases from diverse solid cancers. These analyses revealed cellular neighbourhoods associated with survival in patients with glioblastoma, which we leveraged to identify a unique population of myeloperoxidase (MPO)-positive macrophages associated with long-term survival. Our findings provide insight into the biology of primary and metastatic brain tumours, reinforcing the value of integrating spatial resolution to single-cell datasets to dissect the microenvironmental contexture of cancer.
Collapse
|
6
|
Foda A, Kellner E, Gunawardana A, Gao X, Janz M, Kufner A, Khalil AA, Geran R, Mekle R, Fiebach JB, Galinovic I. Differentiation of Cerebral Neoplasms with Vessel Size Imaging (VSI). Clin Neuroradiol 2022; 32:239-248. [PMID: 34940899 PMCID: PMC8894153 DOI: 10.1007/s00062-021-01129-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Cerebral neoplasms of various histological origins may show comparable appearances on conventional Magnetic Resonance Imaging (MRI). Vessel size imaging (VSI) is an MRI technique that enables noninvasive assessment of microvasculature by providing quantitative estimates of microvessel size and density. In this study, we evaluated the potential of VSI to differentiate between brain tumor types based on their microvascular morphology. METHODS Using a clinical 3T MRI scanner, VSI was performed on 25 patients with cerebral neoplasms, 10 with glioblastoma multiforme (GBM), 8 with primary CNS lymphoma (PCNSL) and 7 with cerebral lung cancer metastasis (MLC). Following the postprocessing of VSI maps, mean vessel diameter (vessel size index, vsi) and microvessel density (Q) were compared across tumors, peritumoral areas, and healthy tissues. RESULTS The MLC tumors have larger and less dense microvasculature compared to PCNSLs in terms of vsi and Q (p = 0.0004 and p < 0.0001, respectively). GBM tumors have higher yet non-significantly different vsi values than PCNSLs (p = 0.065) and non-significant differences in Q. No statistically significant differences in vsi or Q were present between GBMs and MLCs. GBM tumor volume was positively correlated with vsi (r = 0.502, p = 0.0017) and negatively correlated with Q (r = -0.531, p = 0.0007). CONCLUSION Conventional MRI parameters are helpful in differentiating between PCNSLs, GBMs, and MLCs. Additionally incorporating VSI parameters into the diagnostic protocol could help in further differentiating between PCNSLs and metastases and potentially between PCNSLs and GBMs. Future studies in larger patient cohorts are required to establish diagnostic cut-off values for VSI.
Collapse
Affiliation(s)
- Asmaa Foda
- International Graduate Program Medical Neurosciences, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elias Kellner
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Asanka Gunawardana
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Xiang Gao
- Department of Radiology, Medical Physics, University Medical Center Freiburg, Freiburg, Germany
| | - Martin Janz
- Department of Hematology, Oncology and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Kufner
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
- Klinik und Hochschulambulanz für Neurologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A Khalil
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Berlin, Germany
| | - Rohat Geran
- Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Mekle
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jochen B Fiebach
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ivana Galinovic
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
7
|
Waqar M, Lewis D, Agushi E, Gittins M, Jackson A, Coope D. Cerebral and tumoral blood flow in adult gliomas: a systematic review of results from magnetic resonance imaging. Br J Radiol 2021; 94:20201450. [PMID: 34106749 PMCID: PMC9327770 DOI: 10.1259/bjr.20201450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Objective: Blood flow is the rate of blood movement and relevant to numerous processes, though understudied in gliomas. The aim of this review was to pool blood flow metrics obtained from MRI modalities in adult supratentorial gliomas. Methods: MEDLINE, EMBASE and the Cochrane database were queried 01/01/2000–31/12/2019. Studies measuring blood flow in adult Grade II–IV supratentorial gliomas using dynamic susceptibility contrast (DSC) MRI, dynamic contrast enhanced MRI (DCE-MRI) or arterial spin labelling (ASL) were included. Absolute and relative cerebral blood flow (CBF), peritumoral blood flow and tumoral blood flow (TBF) were reported. Results: 34 studies were included with 1415 patients and 1460 scans. The mean age was 52.4 ± 7.3 years. Most patients had glioblastoma (n = 880, 64.6%). The most common imaging modality was ASL (n = 765, 52.4%) followed by DSC (n = 538, 36.8%). Most studies were performed pre-operatively (n = 1268, 86.8%). With increasing glioma grade (II vs IV), TBF increased (70.8 vs 145.5 ml/100 g/min, p < 0.001) and CBF decreased (85.3 vs 49.6 ml/100 g/min, p < 0.001). In Grade IV gliomas, following treatment, CBF increased in ipsilateral (24.9 ± 1.2 vs 26.1 ± 0.0 ml/100 g/min, p < 0.001) and contralateral white matter (25.6 ± 0.2 vs 26.0± 0.0 ml/100 g/min, p < 0.001). Conclusion: Our findings demonstrate that increased mass effect from high-grade gliomas impairs blood flow within the surrounding brain that can improve with surgery. Advances in knowledge: This systematic review demonstrates how mass effect from brain tumours impairs blood flow in the surrounding brain parenchyma that can improve with treatment.
Collapse
Affiliation(s)
- Mueez Waqar
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Daniel Lewis
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Erjon Agushi
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK
| | - Matthew Gittins
- Department of Biostatistics, Division of Population Health, Health Services Research& Primary Care, The University of Manchester, Manchester, UK
| | - Alan Jackson
- Division of Informatics, Imaging and Data Sciences, Wolfson Molecular Imaging Centre, Manchester, UK.,Department of Neuroradiology, Salford Royal NHS Foundation Trust, Salford, UK
| | - David Coope
- Department of Neurosurgery, Salford Royal NHS Foundation Trust, Salford, UK.,Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, Manchester, UK
| |
Collapse
|
8
|
Abstract
Cancer treatment remains a challenge due to a high level of intra- and intertumoral heterogeneity and the rapid development of chemoresistance. In the brain, this is further hampered by the blood-brain barrier that reduces passive diffusion of drugs to a minimum. Tumors grow invasively and form new blood vessels, also in brain tissue where remodeling of pre-existing vasculature is substantial. The cancer-associated vessels in the brain are considered leaky and thus could facilitate the transport of chemotherapeutic agents. Yet, brain tumors are extremely difficult to treat, and, in this review, we will address how different aspects of the vasculature in brain tumors contribute to this.
Collapse
Affiliation(s)
- Casper Hempel
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| | - Kasper B Johnsen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Serhii Kostrikov
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Thomas L Andresen
- Dept of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
9
|
Shuai Y, Ma Z, Lu J, Feng J. LncRNA SNHG15: A new budding star in human cancers. Cell Prolif 2019; 53:e12716. [PMID: 31774607 PMCID: PMC6985667 DOI: 10.1111/cpr.12716] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Long non-coding RNAs (lncRNAs) represent an important group of non-coding RNAs (ncRNAs) with more than 200 nucleotides in length that are transcribed from the so-called genomic "dark matter." Mounting evidence has shown that lncRNAs have manifested a paramount function in the pathophysiology of human diseases, especially in the pathogenesis and progression of cancers. Despite the exponential growth in lncRNA publications, our understanding of regulatory mechanism of lncRNAs is still limited, and a lot of controversies remain in the current lncRNA knowledge.The purpose of this article is to explore the clinical significance and molecular mechanism of SNHG15 in tumors. MATERIALS & METHODS We have systematically searched the Pubmed, Web of Science, Embase and Cochrane databases. We provide an overview of current evidence concerning the functional role, mechanistic models and clinical utilities of SNHG15 in human cancers in this review. RESULTS Small nucleolar RNA host gene 15 (SNHG15), a novel lncRNA, is identified as a key regulator in tumorigenesis and progression of various human cancers, including colorectal cancer (CRC), gastric cancer (GC), pancreatic cancer (PC) and hepatocellular carcinoma (HCC). Dysregulation of SNHG15 has been revealed to be dramatically correlated with advanced clinicopathological factors and predicts poor prognosis, suggesting its potential clinical value as a promising biomarker and therapeutic target for cancer patients. CONCLUSIONS LncRNA SNHG15 may serve as a prospective and novel biomarker for molecular diagnosis and therapeutics in patients with cancer.
Collapse
Affiliation(s)
- You Shuai
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhonghua Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastrointestinal Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jianwei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|