1
|
Soglia S, Pérez-Anker J, Lobos Guede N, Giavedoni P, Puig S, Malvehy J. Diagnostics Using Non-Invasive Technologies in Dermatological Oncology. Cancers (Basel) 2022; 14:5886. [PMID: 36497368 PMCID: PMC9738560 DOI: 10.3390/cancers14235886] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
The growing incidence of skin cancer, with its associated mortality and morbidity, has in recent years led to the developing of new non-invasive technologies, which allow an earlier and more accurate diagnosis. Some of these, such as digital photography, 2D and 3D total-body photography and dermoscopy are now widely used and others, such as reflectance confocal microscopy and optical coherence tomography, are limited to a few academic and referral skin cancer centers because of their cost or the long training period required. Health care professionals involved in the treatment of patients with skin cancer need to know the implications and benefits of new non-invasive technologies for dermatological oncology. In this article we review the characteristics and usability of the main diagnostic imaging methods available today.
Collapse
Affiliation(s)
- Simone Soglia
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
- Department of Dermatology, University of Brescia, 25121 Brescia, Italy
| | - Javiera Pérez-Anker
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Nelson Lobos Guede
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Priscila Giavedoni
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Susana Puig
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| | - Josep Malvehy
- Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Universitat de Barcelona, 08001 Barcelona, Spain
| |
Collapse
|
2
|
Aloupogianni E, Ishikawa M, Kobayashi N, Obi T. Hyperspectral and multispectral image processing for gross-level tumor detection in skin lesions: a systematic review. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220029VR. [PMID: 35676751 PMCID: PMC9174598 DOI: 10.1117/1.jbo.27.6.060901] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 05/11/2023]
Abstract
SIGNIFICANCE Skin cancer is one of the most prevalent cancers worldwide. In the advent of medical digitization and telepathology, hyper/multispectral imaging (HMSI) allows for noninvasive, nonionizing tissue evaluation at a macroscopic level. AIM We aim to summarize proposed frameworks and recent trends in HMSI-based classification and segmentation of gross-level skin tissue. APPROACH A systematic review was performed, targeting HMSI-based systems for the classification and segmentation of skin lesions during gross pathology, including melanoma, pigmented lesions, and bruises. The review adhered to the 2020 Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. For eligible reports published from 2010 to 2020, trends in HMSI acquisition, preprocessing, and analysis were identified. RESULTS HMSI-based frameworks for skin tissue classification and segmentation vary greatly. Most reports implemented simple image processing or machine learning, due to small training datasets. Methodologies were evaluated on heavily curated datasets, with the majority targeting melanoma detection. The choice of preprocessing scheme influenced the performance of the system. Some form of dimension reduction is commonly applied to avoid redundancies that are inherent in HMSI systems. CONCLUSIONS To use HMSI for tumor margin detection in practice, the focus of system evaluation should shift toward the explainability and robustness of the decision-making process.
Collapse
Affiliation(s)
- Eleni Aloupogianni
- Tokyo Institute of Technology, Department of Information and Communication Engineering, Tokyo, Japan
- Address all correspondence to Eleni Aloupogianni,
| | - Masahiro Ishikawa
- Saitama Medical University, Faculty of Health and Medical Care, Saitama, Japan
| | - Naoki Kobayashi
- Saitama Medical University, Faculty of Health and Medical Care, Saitama, Japan
| | - Takashi Obi
- Tokyo Institute of Technology, Department of Information and Communication Engineering, Tokyo, Japan
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
3
|
Schuh S, Ruini C, Perwein MKE, Daxenberger F, Gust C, Sattler EC, Welzel J. Line-Field Confocal Optical Coherence Tomography: A New Tool for the Differentiation between Nevi and Melanomas? Cancers (Basel) 2022; 14:1140. [PMID: 35267448 PMCID: PMC8909859 DOI: 10.3390/cancers14051140] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Until now, the clinical differentiation between a nevus and a melanoma is still challenging in some cases. Line-field confocal optical coherence tomography (LC-OCT) is a new tool with the aim to change that. The aim of the study was to evaluate LC-OCT for the discrimination between nevi and melanomas. A total of 84 melanocytic lesions were examined with LC-OCT and 36 were also imaged with RCM. The observers recorded the diagnoses, and the presence or absence of the 18 most common imaging parameters for melanocytic lesions, nevi, and melanomas in the LC-OCT images. Their confidence in diagnosis and the image quality of LC-OCT and RCM were evaluated. The most useful criteria, the sensitivity and specificity of LC-OCT vs. RCM vs. histology, to differentiate a (dysplastic) nevus from a melanoma were analyzed. Good image quality correlated with better diagnostic performance (Spearman correlation: 0.4). LC-OCT had a 93% sensitivity and 100% specificity compared to RCM (93% sensitivity, 95% specificity) for diagnosing a melanoma (vs. all types of nevi). No difference in performance between RCM and LC-OCT was observed (McNemar's p value = 1). Both devices falsely diagnosed dysplastic nevi as non-dysplastic (43% sensitivity for dysplastic nevus diagnosis). The most significant criteria for diagnosing a melanoma with LC-OCT were irregular honeycombed patterns (92% occurrence rate; 31.7 odds ratio (OR)), the presence of pagetoid spread (89% occurrence rate; 23.6 OR) and the absence of dermal nests (23% occurrence rate, 0.02 OR). In conclusion LC-OCT is useful for the discrimination between melanomas and nevi.
Collapse
Affiliation(s)
- Sandra Schuh
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany;
| | - Cristel Ruini
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (C.R.); (F.D.); (C.G.); (E.C.S.)
| | | | - Fabia Daxenberger
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (C.R.); (F.D.); (C.G.); (E.C.S.)
| | - Charlotte Gust
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (C.R.); (F.D.); (C.G.); (E.C.S.)
| | - Elke Christina Sattler
- Department of Dermatology and Allergy, University Hospital, LMU Munich, 80337 Munich, Germany; (C.R.); (F.D.); (C.G.); (E.C.S.)
| | - Julia Welzel
- Department of Dermatology and Allergology, University Hospital, 86179 Augsburg, Germany;
| |
Collapse
|
4
|
Baranoski GVG, Van Leeuwen SR, Chen FT. On the Sensitivity of Skin Spectral Responses to Variations in the Thickness of the Cutaneous Tissues. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:4257-4261. [PMID: 34892163 DOI: 10.1109/embc46164.2021.9629646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A wide range of devices are being routinely used in the noninvasive screening and monitoring of medical conditions through the analysis of skin spectral responses. The correct interpretation of these responses often depends on the availability of high-fidelity characterization datasets for the selected specimens. More specifically, the higher their fidelity, the more effective the quantification of changes observed in a given biophysical variable of interest. Skin thickness is among the most relevant of these parameters since it plays a pivotal role in the attenuation (scattering and absorption) of light traversing the cutaneous tissues. Transient and permanent physiological processes, such as tanning and ageing, can result in significant time-dependent thickness variations. These, in turn, can introduce biases in the comparison of skin spectral responses obtained at different time instances. In this paper, we investigate the impact of thickness variations on skin reflectance with respect to different regions of light spectrum. Our findings are expected to contribute to the mitigation of interpretation errors and, thus, to the enhancement of noninvasive screening and monitoring procedures based on skin spectral responses.
Collapse
|
5
|
Jung JM, Cho JY, Lee WJ, Chang SE, Lee MW, Won CH. Emerging Minimally Invasive Technologies for the Detection of Skin Cancer. J Pers Med 2021; 11:951. [PMID: 34683091 PMCID: PMC8538732 DOI: 10.3390/jpm11100951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
With the increasing incidence of skin cancer, many noninvasive technologies to detect its presence have been developed. This review focuses on reflectance confocal microscopy (RCM), optical coherence tomography (OCT), high-frequency ultrasound (HFUS), electrical impedance spectroscopy (EIS), pigmented lesion assay (PLA), and Raman spectroscopy (RS) and discusses the basic principle, clinical applications, advantages, and disadvantages of each technology. RCM provides high cellular resolution and has high sensitivity and specificity for the diagnosis of skin cancer. OCT provides lower resolution than RCM, although its evaluable depth is deeper than that of RCM. RCM and OCT may be useful in reducing the number of unnecessary biopsies, evaluating the tumor margin, and monitoring treatment response. HFUS can be mainly used to delineate tumor depths or margins and monitor the treatment response. EIS provides high sensitivity but low specificity for the diagnosis of skin malignancies. PLA, which is based on the genetic information of lesions, is applicable for the detection of melanoma with high sensitivity and moderate-to-high specificity. RS showed high accuracy for the diagnosis of skin cancer, although more clinical studies are required. Advances in these technologies for the diagnosis of skin cancer can lead to the realization of optimized and individualized treatments.
Collapse
Affiliation(s)
- Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.M.J.); (W.J.L.); (S.E.C.); (M.W.L.)
| | - Ji Young Cho
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Korea;
| | - Woo Jin Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.M.J.); (W.J.L.); (S.E.C.); (M.W.L.)
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.M.J.); (W.J.L.); (S.E.C.); (M.W.L.)
| | - Mi Woo Lee
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.M.J.); (W.J.L.); (S.E.C.); (M.W.L.)
| | - Chong Hyun Won
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.M.J.); (W.J.L.); (S.E.C.); (M.W.L.)
| |
Collapse
|
6
|
Grand D, Navrazhina K, Frew JW. A Scoping Review of Non-invasive Imaging Modalities in Dermatological Disease: Potential Novel Biomarkers in Hidradenitis Suppurativa. Front Med (Lausanne) 2019; 6:253. [PMID: 31781567 PMCID: PMC6851050 DOI: 10.3389/fmed.2019.00253] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/21/2019] [Indexed: 01/01/2023] Open
Abstract
Background: The development of imaging-based biomarkers has the potential to overcome major challenges in the accurate and reproducible assessment of disease severity and response to novel therapies in Hidradenitis Suppurativa (HS). Understanding the advantages and limitations of existing non-invasive imaging modalities in dermatological disease will aid in the development of hypotheses and inform the design of future studies. Methods: A scoping review was performed using Medline, Embase, Web of Science Databases and evaluation of "gray literature" until June 30, 2019. Citations were examined according to pre-defined inclusion and exclusion criteria. Citations were reviewed by two independent reviewers. Narrative Synthesis was used to summarize data, structured by imaging modality. Results: Non-invasive imaging modalities, such as ultrasound, MRI, RCM, EIS, OCT, and MIT, were identified. Only ultrasound, MRI and MIT have been used in HS. Image modalities vary in image depth, resolution, cost, accessibility and correlation with known aspects of disease activity in HS. Discussion and Conclusion: The benefits and limitations of each imaging modality are products of cost, accessibility, validity and reliability. An additional hurdle to the development of image-based biomarkers in HS is a lack of established analytical benchmarks that can be correlated with existing biological, inflammatory and clinical parameters. This review has identified potential imaging biomarkers, as well as relevant analytical benchmarks that reflect the presence or absence of disease. Further investigation work is needed to analytically and clinically validate these imaging variables in order to identify potential imaging biomarkers in HS.
Collapse
Affiliation(s)
- David Grand
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States.,Albert Einstein College of Medicine, Bronx, NY, United States
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States.,Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, Weill Cornell University, New York, NY, United States
| | - John W Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, United States
| |
Collapse
|
7
|
Halani S, Foster FS, Breslavets M, Shear NH. Ultrasound and Infrared-Based Imaging Modalities for Diagnosis and Management of Cutaneous Diseases. Front Med (Lausanne) 2018; 5:115. [PMID: 29922650 PMCID: PMC5996893 DOI: 10.3389/fmed.2018.00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Non-invasive bedside imaging tools are becoming more prevalent for assessing cutaneous lesions. Ultrasound used at specific frequencies allows us to assess margins of lesions to minimize the extent of the biopsy that is performed and improve cosmetic outcomes. Vascularity, seen on Doppler ultrasound and contrast-enhanced ultrasound, and stiffness, assessed on tissue elastography, can help differentiate between benign and malignant lesions for clinicians to be more judicious in deciding whether to biopsy. Moreover, research has shown the efficacy in using ultrasound in monitoring flares of hidradenitis suppurativa, a disease affecting apocrine gland-rich areas of the body, for which the current gold standard involves examining and scoring inflammatory lesions with the naked eye. Infrared-based modalities have also been on the uptrend to aid in clinical decision-making regarding suspiciousness of lesions. Reflectance confocal microscopy has lateral resolution that is comparable to histopathology and it has been shown to be an appropriate adjunctive tool to dermoscopy, specifically when evaluating melanomas. Optical coherence tomography has utility in determining lesion thickness because of its depth penetration, and spectrophotometric intracutaneous analysis is becoming more popular as a tool that can be used by general practitioners to know when to refer to dermatology regarding worrisome pigmented lesions. Strides have been made to incorporate electrical impedance spectroscopy alongside dermoscopy in decision-making regarding excision, although the evidence for its use in the clincial setting remains inconclusive. This paper reviews the efficacy and drawbacks of these techniques in the field of dermatology and suggests future directions.
Collapse
Affiliation(s)
- Sheliza Halani
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - F Stuart Foster
- Medical Biophysics, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Neil H Shear
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Dermatology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Weyers W. Screening for malignant melanoma-a critical assessment in historical perspective. Dermatol Pract Concept 2018; 8:89-103. [PMID: 29785325 PMCID: PMC5955075 DOI: 10.5826/dpc.0802a06] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Screening for melanoma has been advocated for many years because early detection and excision have been regarded as the most important measure to lower mortality from that neoplasm. In the past decade, concern has been raised by epidemiologists that screening might result in excision chiefly of "inconsequential cancer," i.e., melanomas that would never have progressed into life-threatening tumors, a phenomenon referred to by the misleading term "overdiagnosis." Without any firm evidence, that speculation has been embraced worldwide, and incipient melanomas have been trivialized. At the same time, efforts at early detection of melanoma have continued and have resulted in biopsy of pigmented lesions at a progressively earlier stage, such as lesions with a diameter of only 2, 3, or 4 mm. Those tiny lesions often lack sufficient criteria for clinical and histopathologic diagnosis, the result being true overdiagnoses, i.e., misdiagnoses of melanocytic nevi as melanoma. This is especially true if available criteria for histopathologic diagnosis are diminuished even further by incomplete excision of lesions. The reliability of histopathologic diagnosis is far higher in excisional biopsies of lesions that were given some more time to develop changes that make them recognizable. Biopsy of pigmented lesions with a diameter of 6 mm has been found to result in a far higher yield of melanomas. In addition to better clinical judgment, slight postponement of biopsies bears the promise of substantial improvement of the reliability of histopathologic diagnosis, and of alleviating true overdiagnoses.
Collapse
|
9
|
[Failure to perform dermoscopy in melanoma-suspicious skin lesions in dermatological practice : Possible medical liability]. Hautarzt 2017; 69:331-334. [PMID: 29234828 DOI: 10.1007/s00105-017-4095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|