1
|
Lujano Olazaba O, Farrow J, Monkkonen T. Fibroblast heterogeneity and functions: insights from single-cell sequencing in wound healing, breast cancer, ovarian cancer and melanoma. Front Genet 2024; 15:1304853. [PMID: 38525245 PMCID: PMC10957653 DOI: 10.3389/fgene.2024.1304853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
Cancer has been described as the wound that does not heal, in large part due to fibroblast involvement. Activation of cancer-associated fibroblasts (CAFs) contributes to critical features of the tumor microenvironment, including upregulation of key marker proteins, recruitment of immune cells, and deposition of extracellular matrix (ECM)-similar to fibroblast activation in injury-induced wound healing. Prior to the widespread availability of single-cell RNA sequencing (scRNA seq), studies of CAFs or fibroblasts in wound healing largely relied on models guided by individual fibroblast markers, or methods with less resolution to unravel the heterogeneous nature of CAFs and wound healing fibroblasts (especially regarding scarring outcome). Here, insights from the enhanced resolution provided by scRNA sequencing of fibroblasts in normal wound healing, breast cancer, ovarian cancer, and melanoma are discussed. These data have revealed differences in expression of established canonical activation marker genes, epigenetic modifications, fibroblast lineages, new gene and proteins of clinical interest for further experimentation, and novel signaling interactions with other cell types that include spatial information.
Collapse
Affiliation(s)
| | | | - Teresa Monkkonen
- Department of Biology, San Diego State University, San Diego, CA, United States
| |
Collapse
|
2
|
Fan S, Liu Y, Lin Z, Zhang Y, Zhang N, Zhao Y, Zhou J, Mao A, Wang L, Feng Y, He X, Wang L, Pan Q. ZNF655 promotes the progression of hepatocellular carcinoma through PSMB8. Cell Biol Int 2023; 47:1535-1546. [PMID: 37272200 DOI: 10.1002/cbin.12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 04/18/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a type of liver cancer that is associated with high mortality rates. This study aims to investigate the role of ZNF655, a member of the zinc finger protein family, in the development of HCC. Immunohistochemical staining analysis was conducted to evaluate the expression of ZNF655 in HCC patient samples. Lentivirus-mediated ZNF655 knockdown was established in HCC cell lines (BEL-7402 and HCCLM3). The effects of ZNF655 on different aspects of HCC cell behavior such as proliferation, apoptosis, cycle, migration and tumor formation were examined. Downstream targets of ZNF655 in HCC were identified and verified through loss/gain-of-function experiments. Clinically, ZNF655 expression was elevated in HCC and increased with the severity of the disease. Functionally, inhibition of ZNF655 expression reduced the progression of HCC cells by decreasing proliferation, causing apoptosis, arresting cell cycle retention in G2, suppressing migration, and attenuating tumor formation in mice. Mechanistically, the proteasome subunit beta type-8 (PSMB8) was found to be co-expressed with ZNF655 in HCC, and PSMB8 knockdown weakened the promotion of ZNF655 overexpression on HCC. In summary, these findings suggest that ZNF655 promotes the progression of HCC through PSMB8, and inhibition of its expression may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Shasha Fan
- Department of Oncology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Yu Liu
- Department of Pathology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Zhenhai Lin
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yongfa Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ning Zhang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiming Zhao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiaming Zhou
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anrong Mao
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Longrong Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yun Feng
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xigan He
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu Wang
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qi Pan
- Department of Hepatic Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Zhang X, Liu T, Huang J, He J. PICALM exerts a role in promoting CRC progression through ERK/MAPK signaling pathway. Cancer Cell Int 2022; 22:178. [PMID: 35501863 PMCID: PMC9063212 DOI: 10.1186/s12935-022-02577-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 04/06/2022] [Indexed: 01/06/2023] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant tumor in gastrointestinal tract with high incidence and mortality. In this study, the functions and potential mechanism of phosphatidylinositol-binding clathrin assembly protein (PICALM) in CRC were preliminarily explored. Methods Based on the Cancer Genome Atlas database and immunohistochemistry staining, revealing that the expression level of PICALM in CRC tissues was higher than that in adjacent normal tissues. Results Moreover, loss-of-function and gain-of-function assays in HCT 116 and RKO cells found that PICALM promotes proliferation and migration of CRC cells and inhibits apoptosis. Consistently, knockdown of PICALM inhibited tumorigenicity of CRC cells in vivo. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that knockdown of PICALM resulted in the enrichment of MAPK signaling pathway. Treatment of CRC cells with MAPK inhibitor reversed the effects of PICALM overexpression on proliferation and apoptosis. In addition, overexpression of PICALM upregulated the protein levels of ERK1/2 (p-ERK1/2), MEK1/2 (p-MEK1/2), p38 (p-p38) and JNK (p-JNK), and these effects were partially alleviated by the treatment of MAPK inhibitor. Conclusions In summary, the study presented the new discovery that PICALM promoted CRC progression through ERK/MAPK signaling pathway, which drew further interest regarding its clinical application as a promising therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02577-z.
Collapse
Affiliation(s)
- Xitao Zhang
- Department of Coloproctology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu, Guangzhou, 510280, Guangdong, China
| | - Tianlai Liu
- Department of Coloproctology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu, Guangzhou, 510280, Guangdong, China
| | - Jinlin Huang
- Department of General Surgery, Shun De Hospital of Guang Zhou University of Chinese Medicine, 898 Jinsha Avenue, Shun De, Foshan, 510006, Guangdong, China
| | - Jianping He
- Department of Coloproctology, Zhujiang Hospital, Southern Medical University, 253 Gongye Middle Avenue, Haizhu, Guangzhou, 510280, Guangdong, China.
| |
Collapse
|
4
|
Liu Q, Peng Z, Shen L, Shen L. Prognostic and Clinicopathological Value of Ki-67 in Melanoma: A Meta-Analysis. Front Oncol 2021; 11:737760. [PMID: 34568073 PMCID: PMC8456078 DOI: 10.3389/fonc.2021.737760] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 01/11/2023] Open
Abstract
Background The prognostic and clinicopathological value of Ki-67 in melanoma is controversial. The purpose of this meta-analysis was to determine the prognostic role of Ki-67 in melanoma patients. Materials and Methods The PubMed, Cochrane Library, Web of Science, and Embase databases were searched systematically up to April 9, 2021. We calculated the pooled hazard ratios (HRs) and 95% confidence intervals (CIs) to determine the relationship between Ki-67 overexpression and survival outcomes. We also calculated the combined odds ratios (ORs) and 95% CIs to determine the relationship between Ki-67 expression levels and clinicopathologic parameters. All data were statistically analyzed by Stata 11.0. Results A total of 10 studies involving 929 patients were included in our meta-analysis. The pooled HR showed that Ki-67 overexpression was connected with poor overall survival rates (HR=2.92, 95% CI=2.17-3.91, p<0.000). However, there was no correlation between Ki-67 overexpression and the PFS (HR=0.999, 95% CI =0.958-1.041, P =0.958; I2 = 21.80%, P =0.258) or RFS (HR=1.14, 95% CI = 0.42-3.11, P =0.993; I2 = 85.00%, P =0.01) rates. Ki-67 expression levels were associated with tumor thickness, but not sex, location, ulceration or vascular invasion. Conclusion Ki-67 is a useful poor prognostic indicator for melanoma patients.
Collapse
Affiliation(s)
- Qixin Liu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Ziheng Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Xie A, Xu X, Kuang P, Zhang L, Yu F. TMED3 promotes the progression and development of lung squamous cell carcinoma by regulating EZR. Cell Death Dis 2021; 12:804. [PMID: 34429402 PMCID: PMC8385054 DOI: 10.1038/s41419-021-04086-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and lacks effective targeted therapy. The transmembrane emp24 trafficking protein 3 (TMED3) belongs to the TMED family, which is responsible for the transport of intracellular proteins. This study was to explore the clinicopathological significance and biological effects of TMED3 in LUSC. Expression of TMED3 in LUSC was detected by immunohistochemical (IHC). The loss-of-function assays were used to investigate the effects of TMED3 on proliferation, apoptosis, cell cycle, and migration of LUSC cells. The influence of TMED3 knockdown on tumor growth in vivo was evaluated by mice xenograft models. In addition, the downstream target of TMED3 was recognized by RNA sequencing and Ingenuity Pathway Analysis (IPA). Moreover, TMED3 was upregulated in LUSC tissue, which was positively correlated with pathological grade. TMED3 knockdown was involved in the regulation of LUSC cell function, such as inhibition of proliferation, reduction of colony formation, induction of apoptosis, and reduction of migration. TMED3 knockdown induced abnormalities in apoptosis-related proteins in LUSC cells. In addition, the inhibition of cell migration by TMED3 knockdown was achieved by regulating EMT. Mechanically, EZR was considered as a potential target for TMED3 to regulate the progress of LUSC. Inhibition of EZR can inhibit the progression of LUSC, and even reduce the promoting effects of TMED3 overexpression on LUSC. In conclusion, TMED3 promoted the progression and development of LUSC by EZR, which may be a novel therapeutic target for LUSC.
Collapse
Affiliation(s)
- An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Peng Kuang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
6
|
Zhu Y, Chen G, Song Y, Chen Z, Chen X. POLE2 knockdown reduce tumorigenesis in esophageal squamous cells. Cancer Cell Int 2020; 20:388. [PMID: 32831648 PMCID: PMC7422519 DOI: 10.1186/s12935-020-01477-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/01/2020] [Indexed: 01/19/2023] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant tumors originated from digestive system around the world and the treatment was limited by the unclear mechanism. DNA polymerase epsilon 2, accessory subunit (POLE2) is involved in DNA replication, repair, and cell cycle control, whose association with ESCC is still not clear. Methods In this study, the expression level of POLE2 in ESCC tissues was detected by IHC. The POLE2 knockdown cell line was constructed, identified by qPCR and western blot and used for detecting cellular functions and constructing xenotransplantation mice model. MTT Assay, colony formation assay, flow cytometry, wound-healing assay and Transwell assay were used to detected cell proliferation, apoptosis and migration. Results We firstly identified that the expression of POLE2 was overexpressed in ESCC. Moreover, the high expression of POLE2 can predict the tumor deterioration and poor prognosis of ESCC patients. Additionally, downregulation of POLE2 was involved in ESCC progression by promoting proliferation, migration, and inhibiting apoptosis in vitro. In vivo studies proved that POLE2 was positively correlated with ESCC tumor formation, which was consistent with the results in vitro. We also illuminated that POLE2 knockdown upregulated pro-apoptotic proteins (Bax, Caspase3, CD40L, FasL, IGFBP-5 and P21) and downregulated anti-apoptotic proteins (CLAP-2, IGF-I and sTNF-R2). In addition, POLE2 was involved in ESCC via targeting PI3K/Akt, Cyclin D1 signaling pathway. Conclusions Therefore, POLE2 was proved to be involved in the development of ESCC, which may be a potential therapeutic target and bring new breakthroughs in the treatment of ESCC.
Collapse
Affiliation(s)
- Yongjun Zhu
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, No. 12, Mid, Wulumuqi Rd, Shanghai, China
| | - Gang Chen
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, No. 12, Mid, Wulumuqi Rd, Shanghai, China
| | - Yang Song
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, No. 12, Mid, Wulumuqi Rd, Shanghai, China
| | - Zhiming Chen
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, No. 12, Mid, Wulumuqi Rd, Shanghai, China
| | - Xiaofeng Chen
- Department of Cardiothoracic Surgery, Huashan Hospital, Fudan University, No. 12, Mid, Wulumuqi Rd, Shanghai, China
| |
Collapse
|
7
|
Zhu X, Yan S, Xiao S, Xue M. Knockdown of ALPK2 inhibits the development and progression of Ovarian Cancer. Cancer Cell Int 2020; 20:267. [PMID: 32595416 PMCID: PMC7313216 DOI: 10.1186/s12935-020-01347-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/15/2020] [Indexed: 01/28/2023] Open
Abstract
Background Alpha protein kinase 2 (ALPK2) was known to play a vital role in cancer by regulating cell cycle and DNA repair. Ovarian cancer (OC) is one of the most lethal malignancies in the female reproductive system. The emphasis of this study is to explore the role of ALPK2 in OC. Methods Firstly, tumor and normal tissues were collected for detecting expression of ALPK2 in OC. Lentivirus-mediated shRNA knockdown of ALPK2 was used to construct OC cell model, which was verified by qRT-PCR and Western blot. The cell proliferation was detected by MTT, cell cycle and apoptosis were measured through flow cytometry. Wound-healing assay was conducted to detect the migration of OC cells. Results It was proved that the expression of ALPK2 in OC tissues was significantly higher than that in normal ovarian tissues. Moreover, knockdown of ALPK2 could inhibit proliferation, migration and promote apoptosis, arrested cell cycle of OC cells. It was also found that ALPK2 knockdown inhibited tumor growth in xenograft mice in vivo. Furthermore, ALPK2 was involved in OC cells via regulating EMT-related proteins (N-cadherin, Vimentin and Snail), inhibiting apoptosis-related proteins (Bcl-2, Bcl-w, HSP27, HSP60, IGF-I, IGF-1sR, Survivin and XIAP), as well as the regulation of downstream pathways (Akt, p-Akt, Cyclin D1, CDK6 and PIK3CA). Conclusions In conclusion, ALPK2 might serve as an optional target for prognosis and therapeutic of OC patients.
Collapse
Affiliation(s)
- Xiaogang Zhu
- Department of Obstetrics and Gynecology, the Third Xiangya Hospital of Central South University, Changsha, 410013 Hunan China
| | - Siqi Yan
- Department of radiation oncology, Hunan Academy of traditional Chinese medicine affiliated hospital, Changsha, Hunan 410007 China
| | - Songshu Xiao
- Department of Obstetrics and Gynecology, the Third Xiangya Hospital of Central South University, Changsha, 410013 Hunan China
| | - Min Xue
- Department of Obstetrics and Gynecology, the Third Xiangya Hospital of Central South University, Changsha, 410013 Hunan China
| |
Collapse
|
8
|
Penas C, Apraiz A, Muñoa I, Arroyo-Berdugo Y, Rasero J, Ezkurra PA, Velasco V, Subiran N, Bosserhoff AK, Alonso S, Asumendi A, Boyano MD. RKIP Regulates Differentiation-Related Features in Melanocytic Cells. Cancers (Basel) 2020; 12:cancers12061451. [PMID: 32503139 PMCID: PMC7352799 DOI: 10.3390/cancers12061451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/29/2020] [Accepted: 05/30/2020] [Indexed: 12/26/2022] Open
Abstract
Raf Kinase Inhibitor Protein (RKIP) has been extensively reported as an inhibitor of key signaling pathways involved in the aggressive tumor phenotype and shows decreased expression in several types of cancers. However, little is known about RKIP in melanoma or regarding its function in normal cells. We examined the role of RKIP in both primary melanocytes and malignant melanoma cells and evaluated its diagnostic and prognostic value. IHC analysis revealed a significantly higher expression of RKIP in nevi compared with early-stage (stage I–II, AJCC 8th) melanoma biopsies. Proliferation, wound healing, and collagen-coated transwell assays uncovered the implication of RKIP on the motility but not on the proliferative capacity of melanoma cells as RKIP protein levels were inversely correlated with the migration capacity of both primary and metastatic melanoma cells but did not alter other parameters. As shown by RNA sequencing, endogenous RKIP knockdown in primary melanocytes triggered the deregulation of cellular differentiation-related processes, including genes (i.e., ZEB1, THY-1) closely related to the EMT. Interestingly, NANOG was identified as a putative transcriptional regulator of many of the deregulated genes, and RKIP was able to decrease the activation of the NANOG promoter. As a whole, our data support the utility of RKIP as a diagnostic marker for early-stage melanomas. In addition, these findings indicate its participation in the maintenance of a differentiated state of melanocytic cells by modulating genes intimately linked to the cellular motility and explain the progressive decrease of RKIP often described in tumors.
Collapse
Affiliation(s)
- Cristina Penas
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Aintzane Apraiz
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Iraia Muñoa
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Yoana Arroyo-Berdugo
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Javier Rasero
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Psychology, Carnegie Mellon University, Pittsburg, PA 15213, USA
| | - Pilar A. Ezkurra
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
| | - Veronica Velasco
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Nerea Subiran
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Department of Physiology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain
| | - Anja K. Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany;
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Santos Alonso
- Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain;
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
| | - Maria D. Boyano
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, UPV/EHU, 48940 Leioa, Spain; (C.P.); (A.A.); (Y.A.-B.); (P.A.E.); (A.A.)
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain; (I.M.); (J.R.); (V.V.); (N.S.)
- Correspondence: ; Tel.: +34-946015689
| |
Collapse
|
9
|
Wang X, Shan YQ, Tan QQ, Tan CL, Zhang H, Liu JH, Ke NW, Chen YH, Liu XB. MEX3A knockdown inhibits the development of pancreatic ductal adenocarcinoma. Cancer Cell Int 2020; 20:63. [PMID: 32140076 PMCID: PMC7048143 DOI: 10.1186/s12935-020-1146-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/19/2020] [Indexed: 02/08/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDA) is one of the most serious causes of death in the world due to its high mortality and inefficacy treatments. MEX3A was first identified in nematodes and was associated with tumor formation and may promote cell proliferation and tumor metastasis. So far, nothing is known about the relationship between MEX3A and PDA. Methods In this study, the expression level of MEX3A in PDA tissues was measured by immunohistochemistry. The qRT-PCR and western blot were used to identify the constructed MEX3A knockdown cell lines, which was further used to construct mouse xenotransplantation models. Cell proliferation, colony formation, cell apoptosis and migration were detected by MTT, colony formation, flow cytometry and Transwell. Results This study showed that MEX3A expression is significantly upregulated in PDA and associated with tumor grade. Loss-of-function studies showed that downregulation of MEX3A could inhibit cell growth in vitro and in vivo. Moreover, it was demonstrated that knockdown of MEX3A in PDA cells promotes apoptosis by regulating apoptosis-related factors, and inhibits migration through influencing EMT. At the same time, the regulation of PDA progression by MEX3A involves changes in downstream signaling pathways including Akt, p-Akt, PIK3CA, CDK6 and MAPK9. Conclusions We proposed that MEX3A is associated with the prognosis and progression of PDA,which can be used as a potential therapeutic target.
Collapse
Affiliation(s)
- Xing Wang
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| | - Yu-Qiang Shan
- 2Department of Hangzhou First People's Hospital, No. 261, Huansha Road, Hangzhou, 310006 Zhejiang China
| | - Qing-Quan Tan
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| | - Chun-Lu Tan
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| | - Hao Zhang
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| | - Jin-Heng Liu
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| | - Neng-Wen Ke
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| | - Yong-Hua Chen
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| | - Xu-Bao Liu
- 1Department of Pancreatic Surgery, West China Hospital, Sichuan University, No 37 Guo Xue Alley, Chengdu, 610041 Sichuan China
| |
Collapse
|