1
|
Somveille M, Bossu CM, DeSaix MG, Alvarado AH, Gómez Villaverde S, Rodríguez Otero G, Hernández-Baños BE, Smith TB, Ruegg KC. Broad-scale seasonal climate tracking is a consequence, not a driver, of avian migratory connectivity. Ecol Lett 2024; 27:e14496. [PMID: 39132717 DOI: 10.1111/ele.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Tracking climatic conditions throughout the year is often assumed to be an adaptive behaviour underlying seasonal migration patterns in animal populations. We investigate this hypothesis using genetic markers data to map migratory connectivity for 27 genetically distinct bird populations from 7 species. We found that the variation in seasonal climate tracking across our suite of populations at a continental scale is more likely a consequence, rather than a direct driver, of migratory connectivity, which is primarily shaped by energy efficiency-i.e., optimizing the balance between accessing available resources and movement costs. However, our results also suggest that regional-scale seasonal precipitation tracking affects population migration destinations, thus revealing a potential scale dependency of ecological processes driving migration. Our results have implications for the conservation of these migratory species under climate change, as populations tracking climate seasonally are potentially at higher risk if they adapt to a narrow range of climatic conditions.
Collapse
Affiliation(s)
- Marius Somveille
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, London, UK
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Matthew G DeSaix
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Allison H Alvarado
- Department of Biology, California State University Channel Islands, Camarillo, California, USA
| | | | - Genaro Rodríguez Otero
- Museo de Zoología, Departmento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Blanca E Hernández-Baños
- Museo de Zoología, Departmento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Mexico City, Mexico
| | - Thomas B Smith
- Center for Tropical Research, Institute for the Environment and Sustainability, University of California, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
2
|
Miller CV, Bossu CM, Sarraco JF, Toews DPL, Rushing CS, Roberto-Charron A, Tremblay JA, Chandler RB, DeSaix MG, Fiss CJ, Larkin JL, Haché S, Nebel S, Ruegg KC. Genomics-informed conservation units reveal spatial variation in climate vulnerability in a migratory bird. Mol Ecol 2024; 33:e17199. [PMID: 38018020 DOI: 10.1111/mec.17199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/30/2023]
Abstract
Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene-environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics-informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world.
Collapse
Affiliation(s)
- Caitlin V Miller
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - James F Sarraco
- The Institute for Bird Populations, Petaluma, California, USA
| | - David P L Toews
- Department of Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Clark S Rushing
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | | | - Junior A Tremblay
- Wildlife Research Division, Environment and Climate Change Canada, Québec, Quebec, Canada
| | - Richard B Chandler
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| | - Matthew G DeSaix
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Cameron J Fiss
- Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| | - Jeff L Larkin
- Department of Biology, Indiana University of Pennsylvania, Indiana, Pennsylvania, USA
| | - Samuel Haché
- Canadian Wildlife Service, Environment Climate Change Canada, Yellowknife, Northwest Territories, Canada
| | | | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
DeSaix MG, Anderson EC, Bossu CM, Rayne CE, Schweizer TM, Bayly NJ, Narang DS, Hagelin JC, Gibbs HL, Saracco JF, Sherry TW, Webster MS, Smith TB, Marra PP, Ruegg KC. Low-coverage whole genome sequencing for highly accurate population assignment: Mapping migratory connectivity in the American Redstart (Setophaga ruticilla). Mol Ecol 2023; 32:5528-5540. [PMID: 37706673 DOI: 10.1111/mec.17137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/26/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
Understanding the geographic linkages among populations across the annual cycle is an essential component for understanding the ecology and evolution of migratory species and for facilitating their effective conservation. While genetic markers have been widely applied to describe migratory connections, the rapid development of new sequencing methods, such as low-coverage whole genome sequencing (lcWGS), provides new opportunities for improved estimates of migratory connectivity. Here, we use lcWGS to identify fine-scale population structure in a widespread songbird, the American Redstart (Setophaga ruticilla), and accurately assign individuals to genetically distinct breeding populations. Assignment of individuals from the nonbreeding range reveals population-specific patterns of varying migratory connectivity. By combining migratory connectivity results with demographic analysis of population abundance and trends, we consider full annual cycle conservation strategies for preserving numbers of individuals and genetic diversity. Notably, we highlight the importance of the Northern Temperate-Greater Antilles migratory population as containing the largest proportion of individuals in the species. Finally, we highlight valuable considerations for other population assignment studies aimed at using lcWGS. Our results have broad implications for improving our understanding of the ecology and evolution of migratory species through conservation genomics approaches.
Collapse
Affiliation(s)
- Matthew G DeSaix
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Eric C Anderson
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Santa Cruz, California, USA
- Department of Fisheries, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Christen M Bossu
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Christine E Rayne
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Teia M Schweizer
- Department of Fisheries, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Nicholas J Bayly
- SELVA Investigación para la conservación en el Neotropico, DG42A #20-37, Bogotá, Colombia
| | - Darshan S Narang
- Trinidad and Tobago Field Naturalists' Club, Port of Spain, Trinidad and Tobago
| | - Julie C Hagelin
- Threatened, Endangered and Diversity Program, Alaska Department of Fish and Game, Fairbanks, Alaska, USA
| | - H Lisle Gibbs
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Ohio Biodiversity Conservation Partnership, The Ohio State University, Columbus, Ohio, USA
| | - James F Saracco
- The Institute for Bird Populations, Petaluma, California, USA
| | - Thomas W Sherry
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Michael S Webster
- Cornell Lab of Ornithology, Ithaca, New York, USA
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York, USA
| | - Thomas B Smith
- Center for Tropical Research, Institute of the Environment & Sustainability, University of California Los Angeles, Los Angeles, California, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, USA
| | - Peter P Marra
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- McCourt School of Public Policy, Georgetown University, Washington, District of Columbia, USA
| | - Kristen C Ruegg
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
4
|
Gonzalez AM, Espejo N, Armenteras D, Hobson KA, Kardynal KJ, Mitchell GW, Mahony N, Bishop CA, Negret PJ, Wilson S. Habitat protection and restoration: Win–win opportunities for migratory birds in the Northern Andes. Perspect Ecol Conserv 2023. [DOI: 10.1016/j.pecon.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
5
|
Céspedes Arias LN, Wilson S, Bayly NJ. Community modeling reveals the importance of elevation and land cover in shaping migratory bird abundance in the Andes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e02481. [PMID: 34674344 PMCID: PMC9287004 DOI: 10.1002/eap.2481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/24/2021] [Accepted: 05/28/2021] [Indexed: 06/13/2023]
Abstract
The tropical Andes are characterized by extreme topographic and climatic complexity, which has likely contributed to their outstanding current species diversity, composed of many range-restricted species. However, little is known about how the distribution and abundance of highly mobile organisms, like long-distance migratory birds, varies across different land covers, elevations, and climatic conditions within the Andes. We conducted 1,606 distance-sampling point counts across the Colombian Andes, spanning elevations from 253 to 3,708 m, a range of precipitation regimes and representative land covers. We then employed a novel application of a multispecies hierarchical modeling approach to evaluate how elevation, local land cover, aboveground woody biomass, cloud cover, precipitation, and seasonality in precipitation shape the abundance of the migratory land bird community in the Andes. We detected 1,824 individuals of 29 species of migratory land birds, six of which were considered incidental in our study region. We modeled the abundance of the remaining 23 species, while considering observer and time of day effects on detectability. We found that both elevation and land cover had an overriding influence on the abundance of migratory species across the Andes, with strong evidence for a mid-elevation peak in abundance, and species-specific responses to both variables. As a community, migratory birds had the highest mean abundance in shade coffee plantations, secondary forest, and mature forest. Aboveground woody biomass did not affect the abundance of all species as a group, but a few showed strong responses to this variable. Contrary to predictions of a positive correlation between abundance and precipitation, we found no evidence for community-level responses to precipitation, aside for a weak tendency for birds to select areas with intermediate levels of precipitation. This novel use of a multispecies model sheds new light on the mechanisms shaping the winter distribution of migratory birds and highlights the importance of elevation and land cover types over climatic variables in the context of the Colombian Andes.
Collapse
Affiliation(s)
- Laura N. Céspedes Arias
- SELVA: Investigación para la Conservación en el NeotrópicoDG 42A #20‐37, 111311Bogotá D.C.Colombia
- Committee on Evolutionary BiologyThe University of ChicagoCulver Hall 402ChicagoIllinois60637USA
| | - Scott Wilson
- Wildlife Research DivisionPacific Wildlife Research CentreEnvironment and Climate Change Canada5421 Robertson RoadDeltaBritish ColumbiaV4K 3N2Canada
- Department of Forest and Conservation SciencesUniversity of British Columbia2424 Main MallVancouverBritish ColumbiaV6T 1Z4Canada
| | - Nicholas J. Bayly
- SELVA: Investigación para la Conservación en el NeotrópicoDG 42A #20‐37, 111311Bogotá D.C.Colombia
| |
Collapse
|
6
|
Roberto-Charron A, Kennedy J, Reitsma L, Tremblay JA, Krikun R, Hobson KA, Ibarzabal J, Fraser KC. Widely distributed breeding populations of Canada warbler (Cardellina canadensis) converge on migration through Central America. BMC ZOOL 2020. [DOI: 10.1186/s40850-020-00056-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
To effectively conserve migratory species, the entire range encompassed by their annual life cycle needs to be considered. Most research on Nearctic-Neotropical migratory birds has focused on the breeding grounds resulting in a general lack of knowledge regarding the wintering and migratory periods. The Canada Warbler (Cardellina canadensis) has declined by 71% from 1970 to 2012, at a rate of 2.9% per year, and is listed as Threatened in Canada. As with most Nearctic-Neotropical migrants, conservation efforts outside the breeding range are limited by a poor understanding of migration routes and the connectivity between specific breeding and wintering populations.
Results
To determine migratory routes of multiple breeding populations of Canada Warblers, we directly-tracked individuals using light-level geolocators deployed at four sites across the breeding range, spanning approximately 43 degrees in longitude (Alberta, Manitoba and Québec, Canada, and New Hampshire, USA). Twenty-five geolocators with usable data were recovered from three sites and were analyzed using FlightR to determine fall migration routes (n = 18) and individual wintering sites (n = 25). Individuals from all breeding populations took a western fall migration route at the Gulf of Mexico; with 77.8% of birds funnelling into a narrow geographic space along the western side of the Gulf of Mexico (97°W-99°W). We found no evidence for population-specific, parallel migration routes. Most individuals (72%) overwintered in Colombia. The remaining individuals overwintered in Venezuela.
Conclusions
Our results demonstrate convergence of migratory routes around a migration barrier for individuals originating from widely distributed breeding areas. Further, we suggest the potential importance of habitat around the Gulf of Mexico during migration and Andean forest in Colombia as overwintering habitat for this threatened species. Future research should be directed at understanding how these areas are used by Canada Warblers.
Collapse
|
7
|
Wilson S, Saracco JF, Krikun R, Flockhart DTT, Godwin CM, Foster KR. Drivers of demographic decline across the annual cycle of a threatened migratory bird. Sci Rep 2018; 8:7316. [PMID: 29743651 PMCID: PMC5943453 DOI: 10.1038/s41598-018-25633-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/18/2018] [Indexed: 02/07/2023] Open
Abstract
Migratory species are rapidly declining but we rarely know which periods of the annual cycle are limiting for most species. This knowledge is needed to effectively allocate conservation resources to the periods of the annual cycle that best promote species recovery. We examined demographic trends and response to human footprint for Canada warblers (Cardellina canadensis), a threatened Neotropical migrant, using range-wide data (1993–2016) from the Monitoring Avian Productivity and Survivorship (MAPS) program on the breeding grounds. Declines in abundance were steepest in the eastern breeding region, followed by the western region. Breeding productivity did not decline in any region. In contrast, we observed declining recruitment in all regions, low apparent survival in the east and west, and a decline in apparent survival in the east. Abundance declined with increasing disturbance around MAPS stations. Between 1993 and 2009, the human footprint index on the breeding range increased by 0.11% in contrast to a 14% increase on the wintering range. Landscape-scale disturbance on the breeding grounds may influence abundance in some regions; however, the observed trends in demography and footprint suggests limitation during the non-breeding period as the likely driver of overall declines, particularly for eastern populations.
Collapse
Affiliation(s)
- Scott Wilson
- Wildlife Research Division, Environment Canada, National Wildlife Research Centre, 1125 Colonel by Drive, Ottawa, ON, K1A 0H3, Canada.
| | - James F Saracco
- The Institute for Bird Populations, PO Box 1346, Point Reyes Station, CA, 94956, USA
| | - Richard Krikun
- Lesser Slave Lake Bird Observatory, Box 1076, Slave Lake, AB, T0G2A0, Canada
| | - D T Tyler Flockhart
- Lesser Slave Lake Bird Observatory, Box 1076, Slave Lake, AB, T0G2A0, Canada.,University of Maryland Center for Environmental Science, Appalachian Laboratory, 301 Braddock Road, Frostburg, MD, 21532, USA
| | - Christine M Godwin
- Owl Moon Environmental Inc., 324 Killdeer Way, Fort McMurray, Alberta, T9K 0R3, Canada
| | - Kenneth R Foster
- Owl Moon Environmental Inc., 324 Killdeer Way, Fort McMurray, Alberta, T9K 0R3, Canada
| |
Collapse
|