1
|
Srivastava V, Kumar R, Wani MY, Robinson K, Ahmad A. Role of artificial intelligence in early diagnosis and treatment of infectious diseases. Infect Dis (Lond) 2025; 57:1-26. [PMID: 39540872 DOI: 10.1080/23744235.2024.2425712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/19/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Infectious diseases remain a global health challenge, necessitating innovative approaches for their early diagnosis and effective treatment. Artificial Intelligence (AI) has emerged as a transformative force in healthcare, offering promising solutions to address this challenge. This review article provides a comprehensive overview of the pivotal role AI can play in the early diagnosis and treatment of infectious diseases. It explores how AI-driven diagnostic tools, including machine learning algorithms, deep learning, and image recognition systems, enhance the accuracy and efficiency of disease detection and surveillance. Furthermore, it delves into the potential of AI to predict disease outbreaks, optimise treatment strategies, and personalise interventions based on individual patient data and how AI can be used to gear up the drug discovery and development (D3) process.The ethical considerations, challenges, and limitations associated with the integration of AI in infectious disease management are also examined. By harnessing the capabilities of AI, healthcare systems can significantly improve their preparedness, responsiveness, and outcomes in the battle against infectious diseases.
Collapse
Affiliation(s)
- Vartika Srivastava
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ravinder Kumar
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Aijaz Ahmad
- Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
2
|
Maletz S, Balagurunathan Y, Murphy K, Folio L, Chima R, Zaheer A, Vadvala H. AI-powered innovations in pancreatitis imaging: a comprehensive literature synthesis. Abdom Radiol (NY) 2025; 50:438-452. [PMID: 39133362 DOI: 10.1007/s00261-024-04512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/16/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Early identification of pancreatitis remains a significant clinical diagnostic challenge that impacts patient outcomes. The evolution of quantitative imaging followed by deep learning models has shown great promise in the non-invasive diagnosis of pancreatitis and its complications. We provide an overview of advancements in diagnostic imaging and quantitative imaging methods along with the evolution of artificial intelligence (AI). In this article, we review the current and future states of methodology and limitations of AI in improving clinical support in the context of early detection and management of pancreatitis.
Collapse
Affiliation(s)
- Sebastian Maletz
- University of South Florida Morsani College of Medicine, Tampa, USA
| | | | - Kade Murphy
- University of South Florida Morsani College of Medicine, Tampa, USA
| | - Les Folio
- University of South Florida Morsani College of Medicine, Tampa, USA
- Moffitt Cancer Center, Tampa, USA
| | - Ranjit Chima
- University of South Florida Morsani College of Medicine, Tampa, USA
- Moffitt Cancer Center, Tampa, USA
| | | | - Harshna Vadvala
- University of South Florida Morsani College of Medicine, Tampa, USA.
- Moffitt Cancer Center, Tampa, USA.
| |
Collapse
|
3
|
Dahiya DS, Shah YR, Canakis A, Parikh C, Chandan S, Ali H, Gangwani MK, Pinnam BSM, Singh S, Sohail AH, Patel R, Ramai D, Al-Haddad M, Baron T, Rastogi A. Groove pancreatitis: From enigma to future directions-A comprehensive review. J Gastroenterol Hepatol 2024; 39:2260-2271. [PMID: 39004833 DOI: 10.1111/jgh.16683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Groove pancreatitis (GP) is a rare and clinically distinct form of chronic pancreatitis affecting the pancreaticoduodenal groove comprising the head of the pancreas, duodenum, and the common bile duct. It is more prevalent in individuals in their 4-5th decade of life and disproportionately affects men compared with women. Excessive alcohol consumption, tobacco smoking, pancreatic ductal stones, pancreatic divisum, annular pancreas, ectopic pancreas, duodenal wall thickening, and peptic ulcers are significant risk factors implicated in the development of GP. The usual presenting symptoms include severe abdominal pain, nausea, vomiting, diarrhea, weight loss, and jaundice. Establishing a diagnosis of GP is often challenging due to significant clinical and radiological overlap with numerous benign and malignant conditions affecting the same anatomical location. This can lead to a delay in initiation of treatment leading to increasing morbidity, mortality, and complication rates. Promising research in artificial intelligence (AI) has garnered immense interest in recent years. Due to its widespread application in diagnostic imaging with a high degree of sensitivity and specificity, AI has the potential of becoming a vital tool in differentiating GP from pancreatic malignancies, thereby preventing a missed or delayed diagnosis. In this article, we provide a comprehensive review of GP, covering the etiology, pathogenesis, clinical presentation, radiological and endoscopic evaluation, management strategies, and future directions. This article also aims to increase awareness about this lesser known and often-misdiagnosed clinical entity amongst clinicians to ultimately improve patient outcomes.
Collapse
Affiliation(s)
- Dushyant S Dahiya
- Division of Gastroenterology, Hepatology and Motility, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Yash R Shah
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University, Pontiac, Michigan, USA
| | - Andrew Canakis
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charmy Parikh
- Department of Internal Medicine, Carle BroMenn Medical Center, Normal, Illinois, USA
| | - Saurabh Chandan
- Division of Gastroenterology and Hepatology, Creighton University School of Medicine, Omaha, Nebraska, USA
| | - Hassam Ali
- Division of Gastroenterology, Hepatology and Nutrition, East Carolina University/Brody School of Medicine, Greenville, North Carolina, USA
| | - Manesh K Gangwani
- Department of Gastroenterology and Hepatology, University of Arkansas For Medical Sciences, Little Rock, Arkansas, USA
| | - Bhanu S M Pinnam
- Department of Internal Medicine, John H. Stroger, Jr. Hospital of Cook County, Chicago, Illinois, USA
| | - Sahib Singh
- Department of Internal Medicine, Sinai Hospital, Baltimore, Maryland, USA
| | - Amir H Sohail
- Complex Surgical Oncology, Department of Surgery, University of New Mexico, Albuquerque, New Mexico, USA
| | - Raj Patel
- Department of Gastroenterology and Hepatology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Daryl Ramai
- Department of Internal Medicine, St. Mary's Medical Center, Langhorne, Pennsylvania, USA
| | - Mohammad Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Todd Baron
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amit Rastogi
- Division of Gastroenterology, Hepatology and Motility, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
4
|
Kuwahara T, Hara K, Mizuno N, Haba S, Okuno N, Fukui T, Urata M, Yamamoto Y. Current status of artificial intelligence analysis for the treatment of pancreaticobiliary diseases using endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography. DEN OPEN 2024; 4:e267. [PMID: 37397344 PMCID: PMC10312781 DOI: 10.1002/deo2.267] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Pancreatic and biliary diseases encompass a range of conditions requiring accurate diagnosis for appropriate treatment strategies. This diagnosis relies heavily on imaging techniques like endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography. Artificial intelligence (AI), including machine learning and deep learning, is becoming integral in medical imaging and diagnostics, such as the detection of colorectal polyps. AI shows great potential in diagnosing pancreatobiliary diseases. Unlike machine learning, which requires feature extraction and selection, deep learning can utilize images directly as input. Accurate evaluation of AI performance is a complex task due to varied terminologies, evaluation methods, and development stages. Essential aspects of AI evaluation involve defining the AI's purpose, choosing appropriate gold standards, deciding on the validation phase, and selecting reliable validation methods. AI, particularly deep learning, is increasingly employed in endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography diagnostics, achieving high accuracy levels in detecting and classifying various pancreatobiliary diseases. The AI often performs better than doctors, even in tasks like differentiating benign from malignant pancreatic tumors, cysts, and subepithelial lesions, identifying gallbladder lesions, assessing endoscopic retrograde cholangiopancreatography difficulty, and evaluating the biliary strictures. The potential for AI in diagnosing pancreatobiliary diseases, especially where other modalities have limitations, is considerable. However, a crucial constraint is the need for extensive, high-quality annotated data for AI training. Future advances in AI, such as large language models, promise further applications in the medical field.
Collapse
Affiliation(s)
| | - Kazuo Hara
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Nobumasa Mizuno
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Shin Haba
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Nozomi Okuno
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Toshitaka Fukui
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | - Minako Urata
- Department of GastroenterologyAichi Cancer Center HospitalAichiJapan
| | | |
Collapse
|
5
|
Chang CH, Chen CJ, Ma YS, Shen YT, Sung MI, Hsu CC, Lin HJ, Chen ZC, Huang CC, Liu CF. Real-time artificial intelligence predicts adverse outcomes in acute pancreatitis in the emergency department: Comparison with clinical decision rule. Acad Emerg Med 2024; 31:149-155. [PMID: 37885118 DOI: 10.1111/acem.14824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023]
Abstract
OBJECTIVE Artificial intelligence (AI) prediction is increasingly used for decision making in health care, but its application for adverse outcomes in emergency department (ED) patients with acute pancreatitis (AP) is not well understood. This study aimed to clarify this aspect. METHODS Data from 8274 ED patients with AP in three hospitals from 2009 to 2018 were analyzed. Demographic data, comorbidities, laboratory results, and adverse outcomes were included. Six algorithms were evaluated, and the one with the highest area under the curve (AUC) was implemented into the hospital information system (HIS) for real-time prediction. Predictive accuracy was compared between the AI model and Bedside Index for Severity in Acute Pancreatitis (BISAP). RESULTS The mean ± SD age was 56.1 ± 16.7 years, with 67.7% being male. The AI model was successfully implemented in the HIS, with Light Gradient Boosting Machine (LightGBM) showing the highest AUC for sepsis (AUC 0.961) and intensive care unit (ICU) admission (AUC 0.973), and eXtreme Gradient Boosting (XGBoost) showing the highest AUC for mortality (AUC 0.975). Compared to BISAP, the AI model had superior AUC for sepsis (BISAP 0.785), ICU admission (BISAP 0.778), and mortality (BISAP 0.817). CONCLUSIONS The first real-time AI prediction model implemented in the HIS for predicting adverse outcomes in ED patients with AP shows favorable initial results. However, further external validation is needed to ensure its reliability and accuracy.
Collapse
Affiliation(s)
- Ching-Hung Chang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chia-Jung Chen
- Department of Information Systems, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Shan Ma
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Yu-Ting Shen
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Mei-I Sung
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Chin Hsu
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Taipei Medical University, Taipei, Taiwan
| | - Zhih-Cherng Chen
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, Chi Mei Medical Center, Tainan, Taiwan
| | - Chien-Cheng Huang
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chung-Feng Liu
- Department of Medical Research, Chi Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
6
|
Cammarata F, Rovati L, Fontana P, Gambitta P, Armellino A, Aseni P. Endoscopic Ultrasound to Identify the Actual Cause of Idiopathic Acute Pancreatitis: A Systematic Review. Diagnostics (Basel) 2023; 13:3256. [PMID: 37892077 PMCID: PMC10606009 DOI: 10.3390/diagnostics13203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Idiopathic acute pancreatitis (IAP) presents a diagnostic challenge and refers to cases where the cause of acute pancreatitis remains uncertain despite a comprehensive diagnostic evaluation. Endoscopic ultrasound (EUS) has emerged as a valuable tool in the diagnostic workup of IAP. This review explores the pivotal role of EUS in detecting the actual cause of IAP and assessing its accuracy, timing, safety, and future technological improvement. In this review, we investigate the role of EUS in identifying the actual cause of IAP by examining the available literature. We aim to assess possible existing evidence regarding EUS accuracy, timing, and safety and explore potential trends of future technological improvements in EUS for diagnostic purposes. Following PRISMA guidelines, 60 pertinent studies were selected and analysed. EUS emerges as a crucial diagnostic tool, particularly when conventional imaging fails. It can offer intricate visualization of the pancreas, biliary system, and adjacent structures. Microlithiasis, biliary sludge, chronic pancreatitis, and small pancreatic tumors seem to be much more accurately identified with EUS in the setting of IAP. The optimal timing for EUS is post-resolution of the acute phase of the disease. With a low rate of complications, EUS poses minimal safety concerns. EUS-guided interventions, including fine-needle aspiration, collection drainage, and biopsies, aid in the cytological analysis. With high diagnostic accuracy, safety, and therapeutic potential, EUS is able to improve patient outcomes when managing IAP. Further refinement of EUS techniques and cost-effectiveness assessment of EUS-guided approaches need to be explored in multicentre prospective studies. This review underscores EUS as a transformative tool in unraveling IAP's enigma and advancing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Francesco Cammarata
- Department of General Surgery, Ospedale Luigi Sacco, Università degli Studi di Milano, 20157 Milan, Italy;
| | - Lucrezia Rovati
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Milan, Italy
- Emergency Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
| | - Paola Fontana
- Department of Gastroenterology, ASST Ovest Milanese, 20025 Legnano, Italy; (P.F.); (P.G.)
| | - Pietro Gambitta
- Department of Gastroenterology, ASST Ovest Milanese, 20025 Legnano, Italy; (P.F.); (P.G.)
| | - Antonio Armellino
- Endoscopy Division, Ospedale San Leopoldo Mandic di Merate, ASST Lecco, 23807 Lecco, Italy;
| | - Paolo Aseni
- Emergency Department, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy
- Department of Biomedical and Clinical Sciences “L. Sacco”, Università degli Studi di Milano, 20157 Milan, Italy
| |
Collapse
|
7
|
Pavel M, Dromain C, Ronot M, Schaefer N, Mandair D, Gueguen D, Elvira D, Jégou S, Balazard F, Dehaene O, Schutte K. The use of deep learning models to predict progression-free survival in patients with neuroendocrine tumors. Future Oncol 2023; 19:2185-2199. [PMID: 37497644 DOI: 10.2217/fon-2022-1136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
Aim: The RAISE project assessed whether deep learning could improve early progression-free survival (PFS) prediction in patients with neuroendocrine tumors. Patients & methods: Deep learning models extracted features from CT scans from patients in CLARINET (NCT00353496) (n = 138/204). A Cox model assessed PFS prediction when combining deep learning with the sum of longest diameter ratio (SLDr) and logarithmically transformed CgA concentration (logCgA), versus SLDr and logCgA alone. Results: Deep learning models extracted features other than lesion shape to predict PFS at week 72. No increase in performance was achieved with deep learning versus SLDr and logCgA models alone. Conclusion: Deep learning models extracted relevant features to predict PFS, but did not improve early prediction based on SLDr and logCgA.
Collapse
Affiliation(s)
- Marianne Pavel
- Department of Medicine 1, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Luo J, Lan L, Huang S, Zeng X, Xiang Q, Li M, Yang S, Zhao W, Zhou X. Real-time prediction of organ failures in patients with acute pancreatitis using longitudinal irregular data. J Biomed Inform 2023; 139:104310. [PMID: 36773821 DOI: 10.1016/j.jbi.2023.104310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/10/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
It is extremely important to identify patients with acute pancreatitis who are at high risk for developing persistent organ failures early in the course of the disease. Due to the irregularity of longitudinal data and the poor interpretability of complex models, many models used to identify acute pancreatitis patients with a high risk of organ failure tended to rely on simple statistical models and limited their application to the early stages of patient admission. With the success of recurrent neural networks in modeling longitudinal medical data and the development of interpretable algorithms, these problems can be well addressed. In this study, we developed a novel model named Multi-task and Time-aware Gated Recurrent Unit RNN (MT-GRU) to directly predict organ failure in patients with acute pancreatitis based on irregular medical EMR data. Our proposed end-to-end multi-task model achieved significantly better performance compared to two-stage models. In addition, our model not only provided an accurate early warning of organ failure for patients throughout their hospital stay, but also demonstrated individual and population-level important variables, allowing physicians to understand the scientific basis of the model for decision-making. By providing early warning of the risk of organ failure, our proposed model is expected to assist physicians in improving outcomes for patients with acute pancreatitis.
Collapse
Affiliation(s)
- Jiawei Luo
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| | - Lan Lan
- IT Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Shixin Huang
- School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, China.
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| | - Qu Xiang
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| | - Mengjiao Li
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China.
| | - Shu Yang
- College of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Weiling Zhao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, USA.
| | - Xiaobo Zhou
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, USA.
| |
Collapse
|
9
|
Artificial Intelligence-The Rising Star in the Field of Gastroenterology and Hepatology. Diagnostics (Basel) 2023; 13:diagnostics13040662. [PMID: 36832150 PMCID: PMC9955763 DOI: 10.3390/diagnostics13040662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Artificial intelligence (AI) is a term that covers a multitude of techniques that are used in a manner that tries to reproduce human intelligence. AI is helpful in various medical specialties that use imaging for diagnostic purposes, and gastroenterology is no exception. In this field, AI has several applications, such as detecting and classifying polyps, detecting the malignancy in polyps, diagnosing Helicobacter pylori infection, gastritis, inflammatory bowel disease, gastric cancer, esophageal neoplasia, and pancreatic and hepatic lesions. The aim of this mini-review is to analyze the currently available studies regarding AI in the field of gastroenterology and hepatology and to discuss its main applications as well as its main limitations.
Collapse
|
10
|
Ghaffar Nia N, Kaplanoglu E, Nasab A. Evaluation of artificial intelligence techniques in disease diagnosis and prediction. DISCOVER ARTIFICIAL INTELLIGENCE 2023. [PMCID: PMC9885935 DOI: 10.1007/s44163-023-00049-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AbstractA broad range of medical diagnoses is based on analyzing disease images obtained through high-tech digital devices. The application of artificial intelligence (AI) in the assessment of medical images has led to accurate evaluations being performed automatically, which in turn has reduced the workload of physicians, decreased errors and times in diagnosis, and improved performance in the prediction and detection of various diseases. AI techniques based on medical image processing are an essential area of research that uses advanced computer algorithms for prediction, diagnosis, and treatment planning, leading to a remarkable impact on decision-making procedures. Machine Learning (ML) and Deep Learning (DL) as advanced AI techniques are two main subfields applied in the healthcare system to diagnose diseases, discover medication, and identify patient risk factors. The advancement of electronic medical records and big data technologies in recent years has accompanied the success of ML and DL algorithms. ML includes neural networks and fuzzy logic algorithms with various applications in automating forecasting and diagnosis processes. DL algorithm is an ML technique that does not rely on expert feature extraction, unlike classical neural network algorithms. DL algorithms with high-performance calculations give promising results in medical image analysis, such as fusion, segmentation, recording, and classification. Support Vector Machine (SVM) as an ML method and Convolutional Neural Network (CNN) as a DL method is usually the most widely used techniques for analyzing and diagnosing diseases. This review study aims to cover recent AI techniques in diagnosing and predicting numerous diseases such as cancers, heart, lung, skin, genetic, and neural disorders, which perform more precisely compared to specialists without human error. Also, AI's existing challenges and limitations in the medical area are discussed and highlighted.
Collapse
Affiliation(s)
- Nafiseh Ghaffar Nia
- College of Engineering and Computer Science, The University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA
| | - Erkan Kaplanoglu
- College of Engineering and Computer Science, The University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA
| | - Ahad Nasab
- College of Engineering and Computer Science, The University of Tennessee at Chattanooga, Chattanooga, TN 37403 USA
| |
Collapse
|
11
|
Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Silvestro L, De Bellis M, Di Girolamo E, Grazzini G, Chiti G, Brunese MC, Belli A, Patrone R, Palaia R, Avallone A, Petrillo A, Izzo F. Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence. Cancers (Basel) 2023; 15:351. [PMID: 36672301 PMCID: PMC9857317 DOI: 10.3390/cancers15020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer (PC) is one of the deadliest cancers, and it is responsible for a number of deaths almost equal to its incidence. The high mortality rate is correlated with several explanations; the main one is the late disease stage at which the majority of patients are diagnosed. Since surgical resection has been recognised as the only curative treatment, a PC diagnosis at the initial stage is believed the main tool to improve survival. Therefore, patient stratification according to familial and genetic risk and the creation of screening protocol by using minimally invasive diagnostic tools would be appropriate. Pancreatic cystic neoplasms (PCNs) are subsets of lesions which deserve special management to avoid overtreatment. The current PC screening programs are based on the annual employment of magnetic resonance imaging with cholangiopancreatography sequences (MR/MRCP) and/or endoscopic ultrasonography (EUS). For patients unfit for MRI, computed tomography (CT) could be proposed, although CT results in lower detection rates, compared to MRI, for small lesions. The actual major limit is the incapacity to detect and characterize the pancreatic intraepithelial neoplasia (PanIN) by EUS and MR/MRCP. The possibility of utilizing artificial intelligence models to evaluate higher-risk patients could favour the diagnosis of these entities, although more data are needed to support the real utility of these applications in the field of screening. For these motives, it would be appropriate to realize screening programs in research settings.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 41012 Napoli, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Galdiero
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Nicola Maggialetti
- Department of Medical Science, Neuroscience and Sensory Organs (DSMBNOS), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Lucrezia Silvestro
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Mario De Bellis
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Elena Di Girolamo
- Division of Gastroenterology and Digestive Endoscopy, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Giulia Grazzini
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Giuditta Chiti
- Department of Emergency Radiology, University Hospital Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Andrea Belli
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Renato Patrone
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Raffaele Palaia
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonio Avallone
- Division of Clinical Experimental Oncology Abdomen, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Antonella Petrillo
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
12
|
Yuan L, Ji M, Wang S, Wen X, Huang P, Shen L, Xu J. Machine learning model identifies aggressive acute pancreatitis within 48 h of admission: a large retrospective study. BMC Med Inform Decis Mak 2022; 22:312. [PMID: 36447180 PMCID: PMC9707001 DOI: 10.1186/s12911-022-02066-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) with critical illness is linked to increased morbidity and mortality. Current risk scores to identify high-risk AP patients have certain limitations. OBJECTIVE To develop and validate a machine learning tool within 48 h after admission for predicting which patients with AP will develop critical illness based on ubiquitously available clinical, laboratory, and radiologic variables. METHODS 5460 AP patients were enrolled. Clinical, laboratory, and imaging variables were collected within 48 h after hospital admission. Least Absolute Shrinkage Selection Operator with bootstrap method was employed to select the most informative variables. Five different machine learning models were constructed to predictive likelihood of critical illness, and the optimal model (APCU) was selected. External cohort was used to validate APCU. APCU and other risk scores were compared using multivariate analysis. Models were evaluated by area under the curve (AUC). The decision curve analysis was employed to evaluate the standardized net benefit. RESULTS Xgboost was constructed and selected as APCU, involving age, comorbid disease, mental status, pulmonary infiltrates, procalcitonin (PCT), neutrophil percentage (Neu%), ALT/AST, ratio of albumin and globulin, cholinesterase, Urea, Glu, AST and serum total cholesterol. The APCU performed excellently in discriminating AP risk in internal cohort (AUC = 0.95) and external cohort (AUC = 0.873). The APCU was significant for biliogenic AP (OR = 4.25 [2.08-8.72], P < 0.001), alcoholic AP (OR = 3.60 [1.67-7.72], P = 0.001), hyperlipidemic AP (OR = 2.63 [1.28-5.37], P = 0.008) and tumor AP (OR = 4.57 [2.14-9.72], P < 0.001). APCU yielded the highest clinical net benefit, comparatively. CONCLUSION Machine learning tool based on ubiquitously available clinical variables accurately predicts the development of AP, optimizing the management of AP.
Collapse
Affiliation(s)
- Lei Yuan
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
- Department of Information Center, Wuhan University Renmin Hospital, Wuhan, Hubei China
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, NanJing, China
| | - Mengyao Ji
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Shuo Wang
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Xinyu Wen
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Pingxiao Huang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Lei Shen
- Department of Gastroenterology, Wuhan University Renmin Hospital, Wuhan, Hubei China
| | - Jun Xu
- School of Automation, Nanjing University of Information Science and Technology, Nanjing, China
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, NanJing, China
| |
Collapse
|
13
|
Liang W, Tian W, Wang Y, Wang P, Wang Y, Zhang H, Ruan S, Shao J, Zhang X, Huang D, Ding Y, Bai X. Classification prediction of pancreatic cystic neoplasms based on radiomics deep learning models. BMC Cancer 2022; 22:1237. [PMID: 36447168 PMCID: PMC9710154 DOI: 10.1186/s12885-022-10273-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Preoperative prediction of pancreatic cystic neoplasm (PCN) differentiation has significant value for the implementation of personalized diagnosis and treatment plans. This study aimed to build radiomics deep learning (DL) models using computed tomography (CT) data for the preoperative differential diagnosis of common cystic tumors of the pancreas. METHODS Clinical and CT data of 193 patients with PCN were collected for this study. Among these patients, 99 were pathologically diagnosed with pancreatic serous cystadenoma (SCA), 55 were diagnosed with mucinous cystadenoma (MCA) and 39 were diagnosed with intraductal papillary mucinous neoplasm (IPMN). The regions of interest (ROIs) were obtained based on manual image segmentation of CT slices. The radiomics and radiomics-DL models were constructed using support vector machines (SVMs). Moreover, based on the fusion of clinical and radiological features, the best combined feature set was obtained according to the Akaike information criterion (AIC) analysis. Then the fused model was constructed using logistic regression. RESULTS For the SCA differential diagnosis, the fused model performed the best and obtained an average area under the curve (AUC) of 0.916. It had a best feature set including position, polycystic features (≥6), cystic wall calcification, pancreatic duct dilatation and radiomics-DL score. For the MCA and IPMN differential diagnosis, the fused model with AUC of 0.973 had a best feature set including age, communication with the pancreatic duct and radiomics score. CONCLUSIONS The radiomics, radiomics-DL and fused models based on CT images have a favorable differential diagnostic performance for SCA, MCA and IPMN. These findings may be beneficial for the exploration of individualized management strategies.
Collapse
Affiliation(s)
- Wenjie Liang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Wuwei Tian
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Yifan Wang
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Pan Wang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Yubizhuo Wang
- grid.13402.340000 0004 1759 700XDepartment of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Hongbin Zhang
- grid.513202.7Department of Radiology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Shijian Ruan
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, Zhejiang University, Zhejiang, Hangzhou China
| | - Jiayuan Shao
- grid.13402.340000 0004 1759 700XPolytechnic Institute, Zhejiang University, Zhejiang, Hangzhou China
| | - Xiuming Zhang
- grid.13402.340000 0004 1759 700XDepartment of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| | - Danjiang Huang
- grid.469601.cDepartment of Radiology, Taizhou First People’s Hospital, Taizhou, Zhejiang, China
| | - Yong Ding
- grid.13402.340000 0004 1759 700XCollege of Information Science & Electronic Engineering, School of Micro-Nano Electronics, Zhejiang University, Zheda Road, Zhejiang, Hangzhou China
| | - Xueli Bai
- grid.452661.20000 0004 1803 6319Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Qingchun Road, Zhejiang, Hangzhou China ,grid.452661.20000 0004 1803 6319Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, Hangzhou China
| |
Collapse
|
14
|
Anta JA, Martínez-Ballestero I, Eiroa D, García J, Rodríguez-Comas J. Artificial intelligence for the detection of pancreatic lesions. Int J Comput Assist Radiol Surg 2022; 17:1855-1865. [PMID: 35951286 DOI: 10.1007/s11548-022-02706-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Pancreatic cancer is one of the most lethal neoplasms among common cancers worldwide, and PCLs are well-known precursors of this type of cancer. Artificial intelligence (AI) could help to improve and speed up the detection and classification of pancreatic lesions. The aim of this review is to summarize the articles addressing the diagnostic yield of artificial intelligence applied to medical imaging (computed tomography [CT] and/or magnetic resonance [MR]) for the detection of pancreatic cancer and pancreatic cystic lesions. METHODS We performed a comprehensive literature search using PubMed, EMBASE, and Scopus (from January 2010 to April 2021) to identify full articles evaluating the diagnostic accuracy of AI-based methods processing CT or MR images to detect pancreatic ductal adenocarcinoma (PDAC) or pancreatic cystic lesions (PCLs). RESULTS We found 20 studies meeting our inclusion criteria. Most of the AI-based systems used were convolutional neural networks. Ten studies addressed the use of AI to detect PDAC, eight studies aimed to detect and classify PCLs, and 4 aimed to predict the presence of high-grade dysplasia or cancer. CONCLUSION AI techniques have shown to be a promising tool which is expected to be helpful for most radiologists' tasks. However, methodologic concerns must be addressed, and prospective clinical studies should be carried out before implementation in clinical practice.
Collapse
Affiliation(s)
- Julia Arribas Anta
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.,Department of Gastroenterology, University Hospital, 12 Octubre. Av. de Córdoba, s/n, 28041, Madrid, Spain
| | - Iván Martínez-Ballestero
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain
| | - Daniel Eiroa
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.,Department of Radiology, Institut de Diagnòstic per la Imatge (IDI), Hospital Universitari Vall d'Hebrón, Passeig de la Vall d'Hebron, 119-129, 08035, Barcelona, Spain
| | - Javier García
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain
| | - Júlia Rodríguez-Comas
- Scientific and Technical Department, Sycai Technologies S.L., Carrer Roc Boronat 117, MediaTIC Building, 08018, Barcelona, Spain.
| |
Collapse
|
15
|
Salanitri FP, Bellitto G, Palazzo S, Irmakci I, Wallace M, Bolan C, Engels M, Hoogenboom S, Aldinucci M, Bagci U, Giordano D, Spampinato C. Neural Transformers for Intraductal Papillary Mucosal Neoplasms (IPMN) Classification in MRI images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:475-479. [PMID: 36085787 PMCID: PMC9921314 DOI: 10.1109/embc48229.2022.9871547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Early detection of precancerous cysts or neoplasms, i.e., Intraductal Papillary Mucosal Neoplasms (IPMN), in pancreas is a challenging and complex task, and it may lead to a more favourable outcome. Once detected, grading IPMNs accurately is also necessary, since low-risk IPMNs can be under surveillance program, while high-risk IPMNs have to be surgically resected before they turn into cancer. Current standards (Fukuoka and others) for IPMN classification show significant intra- and inter-operator variability, beside being error-prone, making a proper diagnosis unreliable. The established progress in artificial intelligence, through the deep learning paradigm, may provide a key tool for an effective support to medical decision for pancreatic cancer. In this work, we follow this trend, by proposing a novel AI-based IPMN classifier that leverages the recent success of transformer networks in generalizing across a wide variety of tasks, including vision ones. We specifically show that our transformer-based model exploits pre-training better than standard convolutional neural networks, thus supporting the sought architectural universalism of transformers in vision, including the medical image domain and it allows for a better interpretation of the obtained results.
Collapse
|
16
|
Yan G, Yan G, Li H, Liang H, Peng C, Bhetuwal A, McClure MA, Li Y, Yang G, Li Y, Zhao L, Fan X. Radiomics and Its Applications and Progress in Pancreatitis: A Current State of the Art Review. Front Med (Lausanne) 2022; 9:922299. [PMID: 35814756 PMCID: PMC9259974 DOI: 10.3389/fmed.2022.922299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Radiomics involves high-throughput extraction and analysis of quantitative information from medical images. Since it was proposed in 2012, there are some publications on the application of radiomics for (1) predicting recurrent acute pancreatitis (RAP), clinical severity of acute pancreatitis (AP), and extrapancreatic necrosis in AP; (2) differentiating mass-forming chronic pancreatitis (MFCP) from pancreatic ductal adenocarcinoma (PDAC), focal autoimmune pancreatitis (AIP) from PDAC, and functional abdominal pain (functional gastrointestinal diseases) from RAP and chronic pancreatitis (CP); and (3) identifying CP and normal pancreas, and CP risk factors and complications. In this review, we aim to systematically summarize the applications and progress of radiomics in pancreatitis and it associated situations, so as to provide reference for related research.
Collapse
Affiliation(s)
- Gaowu Yan
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Gaowen Yan
- Department of Radiology, The First Hospital of Suining, Suining, China
| | - Hongwei Li
- Department of Radiology, The Third Hospital of Mianyang and Sichuan Mental Health Center, Mianyang, China
| | - Hongwei Liang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chen Peng
- Department of Gastroenterology, The First Hospital of Suining, Suining, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Morgan A. McClure
- Department of Radiology and Imaging, Institute of Rehabilitation and Development of Brain Function, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong, China
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Yongmei Li
| | - Guoqing Yang
- Department of Radiology, Suining Central Hospital, Suining, China
- Guoqing Yang
| | - Yong Li
- Department of Radiology, Suining Central Hospital, Suining, China
- Yong Li
| | - Linwei Zhao
- Department of Radiology, Suining Central Hospital, Suining, China
| | - Xiaoping Fan
- Department of Radiology, Suining Central Hospital, Suining, China
| |
Collapse
|
17
|
Dutta AK. Predicting severity of acute pancreatitis: Emerging role of artificial intelligence. CLINICAL AND TRANSLATIONAL DISCOVERY 2022; 2. [DOI: 10.1002/ctd2.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 01/03/2025]
Affiliation(s)
- Amit Kumar Dutta
- Department of Gastrointestinal Sciences Christian Medical College and Hospital Vellore Tamil Nadu India
| |
Collapse
|
18
|
Kiss S, Pintér J, Molontay R, Nagy M, Farkas N, Sipos Z, Fehérvári P, Pecze L, Földi M, Vincze Á, Takács T, Czakó L, Izbéki F, Halász A, Boros E, Hamvas J, Varga M, Mickevicius A, Faluhelyi N, Farkas O, Váncsa S, Nagy R, Bunduc S, Hegyi PJ, Márta K, Borka K, Doros A, Hosszúfalusi N, Zubek L, Erőss B, Molnár Z, Párniczky A, Hegyi P, Szentesi A. Early prediction of acute necrotizing pancreatitis by artificial intelligence: a prospective cohort-analysis of 2387 cases. Sci Rep 2022; 12:7827. [PMID: 35552440 PMCID: PMC9098474 DOI: 10.1038/s41598-022-11517-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
Pancreatic necrosis is a consistent prognostic factor in acute pancreatitis (AP). However, the clinical scores currently in use are either too complicated or require data that are unavailable on admission or lack sufficient predictive value. We therefore aimed to develop a tool to aid in necrosis prediction. The XGBoost machine learning algorithm processed data from 2387 patients with AP. The confidence of the model was estimated by a bootstrapping method and interpreted via the 10th and the 90th percentiles of the prediction scores. Shapley Additive exPlanations (SHAP) values were calculated to quantify the contribution of each variable provided. Finally, the model was implemented as an online application using the Streamlit Python-based framework. The XGBoost classifier provided an AUC value of 0.757. Glucose, C-reactive protein, alkaline phosphatase, gender and total white blood cell count have the most impact on prediction based on the SHAP values. The relationship between the size of the training dataset and model performance shows that prediction performance can be improved. This study combines necrosis prediction and artificial intelligence. The predictive potential of this model is comparable to the current clinical scoring systems and has several advantages over them.
Collapse
Affiliation(s)
- Szabolcs Kiss
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary.,Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - József Pintér
- Human and Social Data Science Lab, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - Roland Molontay
- Human and Social Data Science Lab, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary.,Stochastics Research Group, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Egry József u. 1, Budapest, 1111, Hungary
| | - Marcell Nagy
- Human and Social Data Science Lab, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest, 1111, Hungary
| | - Nelli Farkas
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Institute of Bioanalysis, Medical School, University of Pécs, Honvéd u. 1, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
| | - Péter Fehérvári
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Department of Biomathematics and Informatics, University of Veterinary Medicine, István u. 2, Budapest, 1078, Hungary
| | - László Pecze
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary
| | - Mária Földi
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary.,Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - Áron Vincze
- Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Ifjúság út 13, Pécs, 7624, Hungary
| | - Tamás Takács
- Department of Medicine, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - László Czakó
- Department of Medicine, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - Ferenc Izbéki
- Department of Internal Medicine, Szent György Teaching Hospital of County Fejér, Seregélyesi út 3, Székesfehérvár, 8000, Hungary
| | - Adrienn Halász
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary.,Department of Internal Medicine, Szent György Teaching Hospital of County Fejér, Seregélyesi út 3, Székesfehérvár, 8000, Hungary
| | - Eszter Boros
- Department of Internal Medicine, Szent György Teaching Hospital of County Fejér, Seregélyesi út 3, Székesfehérvár, 8000, Hungary
| | - József Hamvas
- Bajcsy-Zsilinszky Hospital, Maglódi út 89-91, Budapest, 1106, Hungary
| | - Márta Varga
- Department of Gastroenterology, BMKK Dr Rethy Pal Hospital, Gyulai út 18, Békéscsaba, 5600, Hungary
| | - Artautas Mickevicius
- Vilnius University Hospital Santaros Clinics, Clinics of Abdominal Surgery, Nephrourology and Gastroenterology, Faculty of Medicine, Vilnius University, Santariškių g. 2, 08410, Vilnius, Lithuania
| | - Nándor Faluhelyi
- Department of Medical Imaging, Medical School, University of Pécs, Ifjúság út 13, Pécs, 7624, Hungary
| | - Orsolya Farkas
- Department of Medical Imaging, Medical School, University of Pécs, Ifjúság út 13, Pécs, 7624, Hungary
| | - Szilárd Váncsa
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Rita Nagy
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary.,Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary
| | - Stefania Bunduc
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Doctoral School, Carol Davila University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474, Bucharest, Romania
| | - Péter Jenő Hegyi
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Katalin Márta
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Katalin Borka
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,2nd Department of Pathology, Semmelweis University, Üllői út 93, Budapest, 1091, Hungary
| | - Attila Doros
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Department of Transplantation and Surgery, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Nóra Hosszúfalusi
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Department of Internal Medicine and Hematology, Semmelweis University, Szentkirályi u. 46, Budapest, 1088, Hungary
| | - László Zubek
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78, Budapest, 1082, Hungary
| | - Bálint Erőss
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Zsolt Molnár
- Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Department of Anaesthesiology and Intensive Therapy, Semmelweis University, Üllői út 78, Budapest, 1082, Hungary.,Department of Anaesthesiology and Intensive Therapy, Poznan University of Medical Sciences, ul. św. Marii Magdaleny 14, 61861, Poznan, Wielkopolska, Poland
| | - Andrea Párniczky
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Heim Pál National Pediatric Institute, Üllői út 86, Budapest, 1089, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.,Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, 1085, Hungary.,Division of Pancreatic Diseases, Heart and Vascular Center, Semmelweis University, Baross u. 23, Budapest, 1082, Hungary
| | - Andrea Szentesi
- Doctoral School of Clinical Medicine, Faculty of Medicine, University of Szeged, Szeged, 6720, Hungary. .,Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Szigeti út 12., II. Emelet, Pécs, 7624, Hungary.
| | | |
Collapse
|
19
|
Revolutionary Strategies Analysis and Proposed System for Future Infrastructure in Internet of Things. SUSTAINABILITY 2021. [DOI: 10.3390/su14010071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The Internet of Things (IoT) has changed the worldwide network of people, smart devices, intelligent things, data, and information as an emergent technology. IoT development is still in its early stages, and numerous interrelated challenges must be addressed. IoT is the unifying idea of embedding everything. The Internet of Things offers a huge opportunity to improve the world’s accessibility, integrity, availability, scalability, confidentiality, and interoperability. However, securing the Internet of Things is a difficult issue. The IoT aims to connect almost everything within the framework of a common infrastructure. This helps in controlling devices and, will allow device status to be updated everywhere and at any time. To develop technology via IoT, several critical scientific studies and inquiries have been carried out. However, many obstacles and problems remain to be tackled in order to reach IoT’s maximum potential. These problems and concerns must be taken into consideration in different areas of the IoT, such as implementation in remote areas, threats to the system, development support, social and environmental impacts, etc. This paper reviews the current state of the art in different IoT architectures, with a focus on current technologies, applications, challenges, IoT protocols, and opportunities. As a result, a detailed taxonomy of IoT is presented here which includes interoperability, scalability, security and energy efficiency, among other things. Moreover, the significance of blockchains and big data as well as their analysis in relation to IoT, is discussed. This article aims to help readers and researchers understand the IoT and its applicability to the real world.
Collapse
|
20
|
Kröner PT, Engels MML, Glicksberg BS, Johnson KW, Mzaik O, van Hooft JE, Wallace MB, El-Serag HB, Krittanawong C. Artificial intelligence in gastroenterology: A state-of-the-art review. World J Gastroenterol 2021; 27:6794-6824. [PMID: 34790008 PMCID: PMC8567482 DOI: 10.3748/wjg.v27.i40.6794] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
The development of artificial intelligence (AI) has increased dramatically in the last 20 years, with clinical applications progressively being explored for most of the medical specialties. The field of gastroenterology and hepatology, substantially reliant on vast amounts of imaging studies, is not an exception. The clinical applications of AI systems in this field include the identification of premalignant or malignant lesions (e.g., identification of dysplasia or esophageal adenocarcinoma in Barrett’s esophagus, pancreatic malignancies), detection of lesions (e.g., polyp identification and classification, small-bowel bleeding lesion on capsule endoscopy, pancreatic cystic lesions), development of objective scoring systems for risk stratification, predicting disease prognosis or treatment response [e.g., determining survival in patients post-resection of hepatocellular carcinoma), determining which patients with inflammatory bowel disease (IBD) will benefit from biologic therapy], or evaluation of metrics such as bowel preparation score or quality of endoscopic examination. The objective of this comprehensive review is to analyze the available AI-related studies pertaining to the entirety of the gastrointestinal tract, including the upper, middle and lower tracts; IBD; the hepatobiliary system; and the pancreas, discussing the findings and clinical applications, as well as outlining the current limitations and future directions in this field.
Collapse
Affiliation(s)
- Paul T Kröner
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Megan ML Engels
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Cancer Center Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, Amsterdam 1105, The Netherlands
| | - Benjamin S Glicksberg
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Kipp W Johnson
- The Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Obaie Mzaik
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Jeanin E van Hooft
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Amsterdam 2300, The Netherlands
| | - Michael B Wallace
- Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL 32224, United States
- Division of Gastroenterology and Hepatology, Sheikh Shakhbout Medical City, Abu Dhabi 11001, United Arab Emirates
| | - Hashem B El-Serag
- Section of Gastroenterology and Hepatology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
| | - Chayakrit Krittanawong
- Section of Health Services Research, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX 77030, United States
- Section of Cardiology, Michael E. DeBakey VA Medical Center, Houston, TX 77030, United States
| |
Collapse
|
21
|
Anastasiou J, Coronel E, Cazacu I, Săftoiu A, Berzin T. Artificial Intelligence-Assisted Diagnostic Approaches for Pancreatic Disease. Pancreas 2021; 50:e69-e70. [PMID: 34714294 DOI: 10.1097/mpa.0000000000001876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
22
|
Laoveeravat P, Abhyankar PR, Brenner AR, Gabr MM, Habr FG, Atsawarungruangkit A. Artificial intelligence for pancreatic cancer detection: Recent development and future direction. Artif Intell Gastroenterol 2021; 2:56-68. [DOI: 10.35712/aig.v2.i2.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Artificial intelligence (AI) has been increasingly utilized in medical applications, especially in the field of gastroenterology. AI can assist gastroenterologists in imaging-based testing and prediction of clinical diagnosis, for examples, detecting polyps during colonoscopy, identifying small bowel lesions using capsule endoscopy images, and predicting liver diseases based on clinical parameters. With its high mortality rate, pancreatic cancer can highly benefit from AI since the early detection of small lesion is difficult with conventional imaging techniques and current biomarkers. Endoscopic ultrasound (EUS) is a main diagnostic tool with high sensitivity for pancreatic adenocarcinoma and pancreatic cystic lesion. The standard tumor markers have not been effective for diagnosis. There have been recent research studies in AI application in EUS and novel biomarkers to early detect and differentiate malignant pancreatic lesions. The findings are impressive compared to the available traditional methods. Herein, we aim to explore the utility of AI in EUS and novel serum and cyst fluid biomarkers for pancreatic cancer detection.
Collapse
Affiliation(s)
- Passisd Laoveeravat
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Priya R Abhyankar
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Aaron R Brenner
- Department of Internal Medicine, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Moamen M Gabr
- Division of Digestive Diseases and Nutrition, University of Kentucky College of Medicine, Lexington, KY 40536, United States
| | - Fadlallah G Habr
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| | - Amporn Atsawarungruangkit
- Division of Gastroenterology, Warren Alpert Medical School of Brown University, Providence, RI 02903, United States
| |
Collapse
|