1
|
Carrillo C, Chang A, Armstrong H, Cairney J, McAuley JD, Trainor LJ. Auditory rhythm facilitates perception and action in children at risk for developmental coordination disorder. Sci Rep 2024; 14:12203. [PMID: 38806554 PMCID: PMC11133375 DOI: 10.1038/s41598-024-62322-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Developmental Coordination Disorder (DCD) is a common neurodevelopmental disorder featuring deficits in motor coordination and motor timing among children. Deficits in rhythmic tracking, including perceptually tracking and synchronizing action with auditory rhythms, have been studied in a wide range of motor disorders, providing a foundation for developing rehabilitation programs incorporating auditory rhythms. We tested whether DCD also features these auditory-motor deficits among 7-10 year-old children. In a speech recognition task with no overt motor component, modulating the speech rhythm interfered more with the performance of children at risk for DCD than typically developing (TD) children. A set of auditory-motor tapping tasks further showed that, although children at risk for DCD performed worse than TD children in general, the presence of an auditory rhythmic cue (isochronous metronome or music) facilitated the temporal consistency of tapping. Finally, accuracy in the recognition of rhythmically modulated speech and tapping consistency correlated with performance on the standardized motor assessment. Together, the results show auditory rhythmic regularity benefits auditory perception and auditory-motor coordination in children at risk for DCD. This provides a foundation for future clinical studies to develop evidence-based interventions involving auditory-motor rhythmic coordination for children with DCD.
Collapse
Affiliation(s)
- Chantal Carrillo
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada.
| | - Andrew Chang
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
- Department of Psychology, New York University, New York, USA
| | - Hannah Armstrong
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
| | - John Cairney
- Infant and Child Health (INCH) Lab, Department of Family Medicine, McMaster University, Hamilton, ON, Canada
- School of Human Movement and Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - J Devin McAuley
- Department of Psychology, Michigan State University, Michigan, USA
| | - Laurel J Trainor
- Department of Psychology, Neuroscience, and Behaviour, McMaster University, Hamilton, ON, Canada
- McMaster Institute for Music and the Mind, McMaster University, Hamilton, ON, Canada
- Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| |
Collapse
|
2
|
Danna J, Lê M, Tallet J, Albaret JM, Chaix Y, Ducrot S, Jover M. Motor Adaptation Deficits in Children with Developmental Coordination Disorder and/or Reading Disorder. CHILDREN (BASEL, SWITZERLAND) 2024; 11:491. [PMID: 38671708 PMCID: PMC11049534 DOI: 10.3390/children11040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Procedural learning has been mainly tested through motor sequence learning tasks in children with neurodevelopmental disorders, especially with isolated Developmental Coordination Disorder (DCD) and Reading Disorder (RD). Studies on motor adaptation are scarcer and more controversial. This study aimed to compare the performance of children with isolated and associated DCD and RD in a graphomotor adaptation task. In total, 23 children with RD, 16 children with DCD, 19 children with DCD-RD, and 21 typically developing (TD) children wrote trigrams both in the conventional (from left to right) and opposite (from right to left) writing directions. The results show that movement speed and accuracy were more impacted by the adaptation condition (opposite writing direction) in children with neurodevelopmental disorders than TD children. Our results also reveal that children with RD have less difficulty adapting their movement than children with DCD. Children with DCD-RD had the most difficulty, and analysis of their performance suggests a cumulative effect of the two neurodevelopmental disorders in motor adaptation.
Collapse
Affiliation(s)
- Jérémy Danna
- CLLE, Université de Toulouse, CNRS, 31058 Toulouse, France
| | - Margaux Lê
- Aix-Marseille University, PsyCLE, 13284 Aix-en-Provence, France; (M.L.); (M.J.)
- Aix-Marseille University, CNRS, CRPN, 13015 Marseille, France
| | - Jessica Tallet
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
| | - Jean-Michel Albaret
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
| | - Yves Chaix
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
- Pediatric Neurology Department, Children’s Hospital, Toulouse University Hospital, 31300 Toulouse, France
| | - Stéphanie Ducrot
- Aix-Marseille University, CNRS, LPL, 13100 Aix-en-Provence, France;
| | - Marianne Jover
- Aix-Marseille University, PsyCLE, 13284 Aix-en-Provence, France; (M.L.); (M.J.)
| |
Collapse
|
3
|
Knaier E, Meier CE, Caflisch JA, Huber R, Kakebeeke TH, Jenni OG. Visuomotor adaptation, internal modelling, and compensatory movements in children with developmental coordination disorder. RESEARCH IN DEVELOPMENTAL DISABILITIES 2023; 143:104624. [PMID: 37972466 DOI: 10.1016/j.ridd.2023.104624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Developmental coordination disorder (DCD) is one of the most prevalent developmental disorders in school-aged children. The mechanisms and etiology underlying DCD remain somewhat unclear. Altered visuomotor adaptation and internal model deficits are discussed in the literature. AIMS The study aimed to investigate visuomotor adaptation and internal modelling to determine whether and to what extent visuomotor learning might be impaired in children with DCD compared to typically developing children (TD). Further, possible compensatory movements during visuomotor learning were explored. METHODS AND PROCEDURES Participants were 12 children with DCD (age 12.4 ± 1.8, four female) and 18 age-matched TD (12.3 ± 1.8, five female). Visuomotor learning was measured with the Motor task manager. Compensatory movements were parameterized by spatial and temporal variables. OUTCOMES AND RESULTS Despite no differences in visuomotor adaptation or internal modelling, significant main effects for group were found in parameters representing movement accuracy, motor speed, and movement variability between DCD and TD. CONCLUSIONS AND IMPLICATIONS Children with DCD showed comparable performances in visuomotor adaptation and internal modelling to TD. However, movement variability was increased, whereas movement accuracy and motor speed were reduced, suggesting decreased motor acuity in children with DCD.
Collapse
Affiliation(s)
- Elisa Knaier
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Claudia E Meier
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jon A Caflisch
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Reto Huber
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland
| | - Tanja H Kakebeeke
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Oskar G Jenni
- Child Development Center, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Desbernats A, Martin E, Tallet J. Which factors modulate spontaneous motor tempo? A systematic review of the literature. Front Psychol 2023; 14:1161052. [PMID: 37920737 PMCID: PMC10619865 DOI: 10.3389/fpsyg.2023.1161052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/02/2023] [Indexed: 11/04/2023] Open
Abstract
Intentionally or not, humans produce rhythmic behaviors (e.g., walking, speaking, and clapping). In 1974, Paul Fraisse defined rhythmic behavior as a periodic movement that obeys a temporal program specific to the subject and that depends less on the conditions of the action (p. 47). Among spontaneous rhythms, the spontaneous motor tempo (SMT) corresponds to the tempo at which someone produces movements in the absence of external stimuli, at the most regular, natural, and pleasant rhythm for him/her. However, intra- and inter-individual differences exist in the SMT values. Even if several factors have been suggested to influence the SMT (e.g., the age of participants), we do not yet know which factors actually modulate the value of the SMT. In this context, the objectives of the present systematic review are (1) to characterize the range of SMT values found in the literature in healthy human adults and (2) to identify all the factors modulating the SMT values in humans. Our results highlight that (1) the reference value of SMT is far from being a common value of 600 ms in healthy human adults, but a range of SMT values exists, and (2) many factors modulate the SMT values. We discuss our results in terms of intrinsic factors (in relation to personal characteristics) and extrinsic factors (in relation to environmental characteristics). Recommendations are proposed to assess the SMT in future research and in rehabilitative, educative, and sport interventions involving rhythmic behaviors.
Collapse
Affiliation(s)
- Anaïs Desbernats
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Jessica Tallet
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
5
|
Pranjić M, Hashemi N, Arnett AB, Thaut MH. Auditory-Perceptual and Auditory-Motor Timing Abilities in Children with Developmental Coordination Disorder: A Scoping Review. Brain Sci 2023; 13:brainsci13050729. [PMID: 37239201 DOI: 10.3390/brainsci13050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Developmental coordination disorder (DCD) remains largely underdiagnosed and masked by other co-occurring conditions. The aim of this study was to (1) provide the first review of research regarding auditory-motor timing and synchronization abilities in children with DCD and (2) examine whether reduced motor performance may be associated with difficulties in auditory perceptual timing. The scoping review was carried out across five major databases (MEDLINE, Embase, PsycINFO, CINAHL, and Scopus) in accordance with the PRISMA-ScR guidelines. Studies were screened by two independent reviewers against the inclusion criteria, without publication date restrictions. From an initial return of 1673 records, 16 articles were included in the final review and synthesized based on the timing modality studied (i.e., auditory-perceptual, motor, or auditory-motor). Results suggest that children with DCD have difficulties with rhythmic movements both with and without external auditory cues and further indicate that variability in and slowness of motor response are key characteristics of DCD, regardless of the experimental task. Importantly, our review highlights a significant gap in the literature regarding auditory perceptual abilities in DCD. In addition to testing auditory perception, future studies should compare the performance of children with DCD on paced and unpaced tasks to determine whether auditory stimuli contribute to a more or less stable performance. This knowledge may inform future therapeutic interventions.
Collapse
Affiliation(s)
- Marija Pranjić
- Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON M5S 1C5, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
| | - Niloufaralsadat Hashemi
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON M4G 1R8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Anne B Arnett
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA 02115, USA
- Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael H Thaut
- Music and Health Science Research Collaboratory, University of Toronto, Toronto, ON M5S 1C5, Canada
- Faculty of Medicine, Institute of Medical Science and Rehabilitation Research Institute, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
6
|
Ke L, Su X, Yang S, Du Z, Huang S, Wang Y. New trends in developmental coordination disorder: Multivariate, multidimensional and multimodal. Front Psychiatry 2023; 14:1116369. [PMID: 36778631 PMCID: PMC9911460 DOI: 10.3389/fpsyt.2023.1116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Developmental coordination disorder (DCD) is a motor development disorder that affects an individual's growth and development, and may persist throughout life. It is not caused by intellectual or physical disability. Studies have suggested DCD often occurs in childhood, resulting in a series of abnormal manifestations that hinder children's normal development; cohort studies suggest a higher incidence in boys than in girls. Early diagnosis and appropriate interventions can help relieve symptoms. Unfortunately, the relevant research still needs to be further developed. In this paper, we first start from the definition of DCD, systematically investigate the relevant research papers in the past decades and summarize the current research hotspots and research trends in this field. After summarizing, it is found that this research field has attracted more researchers to join, the number of papers published has increased year by year and has become a hot spot in multidisciplinary research, such as education, psychology, sports rehabilitation, neurobiology, and neuroimaging. The continuous development of the correlation between perinatal factors and DCD, various omics studies, and neuroimaging methods also brings new perspectives and working targets to DCD research. DCD-related research will continue to deepen along the research direction of multivariate, multidimensional, and multimodal.
Collapse
Affiliation(s)
- Li Ke
- Collaborative Innovation Center of Assessment for Basic Education Quality, Beijing Normal University, Beijing, China
| | - Xueting Su
- Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Sijia Yang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhihao Du
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Shunsen Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| |
Collapse
|
7
|
Subara-Zukic E, Cole MH, McGuckian TB, Steenbergen B, Green D, Smits-Engelsman BCM, Lust JM, Abdollahipour R, Domellöf E, Deconinck FJA, Blank R, Wilson PH. Behavioral and Neuroimaging Research on Developmental Coordination Disorder (DCD): A Combined Systematic Review and Meta-Analysis of Recent Findings. Front Psychol 2022; 13:809455. [PMID: 35153960 PMCID: PMC8829815 DOI: 10.3389/fpsyg.2022.809455] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/03/2022] [Indexed: 01/16/2023] Open
Abstract
AIM The neurocognitive basis of Developmental Coordination Disorder (DCD; or motor clumsiness) remains an issue of continued debate. This combined systematic review and meta-analysis provides a synthesis of recent experimental studies on the motor control, cognitive, and neural underpinnings of DCD. METHODS The review included all published work conducted since September 2016 and up to April 2021. One-hundred papers with a DCD-Control comparison were included, with 1,374 effect sizes entered into a multi-level meta-analysis. RESULTS The most profound deficits were shown in: voluntary gaze control during movement; cognitive-motor integration; practice-/context-dependent motor learning; internal modeling; more variable movement kinematics/kinetics; larger safety margins when locomoting, and atypical neural structure and function across sensori-motor and prefrontal regions. INTERPRETATION Taken together, these results on DCD suggest fundamental deficits in visual-motor mapping and cognitive-motor integration, and abnormal maturation of motor networks, but also areas of pragmatic compensation for motor control deficits. Implications for current theory, future research, and evidence-based practice are discussed. SYSTEMATIC REVIEW REGISTRATION PROSPERO, identifier: CRD42020185444.
Collapse
Affiliation(s)
- Emily Subara-Zukic
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Michael H. Cole
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Thomas B. McGuckian
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| | - Bert Steenbergen
- Department of Pedagogical and Educational Sciences, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Dido Green
- Department of Health Sciences, Brunel University London, London, United Kingdom
- Department of Rehabilitation, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Bouwien CM Smits-Engelsman
- Division of Physiotherapy, Department of Health and Rehabilitation Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jessica M. Lust
- Department of Pedagogical and Educational Sciences, Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
| | - Reza Abdollahipour
- Department of Natural Sciences in Kinanthropology, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czechia
| | - Erik Domellöf
- Department of Psychology, Umeå University, Umeå, Sweden
| | | | - Rainer Blank
- Heidelberg University, Heidelberg, Germany
- Klinik für Kinderneurologie und Sozialpädiatrie, Kinderzentrum Maulbronn gGmbH, Maulbronn, Germany
| | - Peter H. Wilson
- Healthy Brain and Mind Research Centre, School of Behavioural and Health Sciences, Faculty of Health Sciences, Australian Catholic University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Blais M, Jucla M, Maziero S, Albaret JM, Chaix Y, Tallet J. Specific Cues Can Improve Procedural Learning and Retention in Developmental Coordination Disorder and/or Developmental Dyslexia. Front Hum Neurosci 2021; 15:744562. [PMID: 34975432 PMCID: PMC8714931 DOI: 10.3389/fnhum.2021.744562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022] Open
Abstract
The present study investigates procedural learning of motor sequences in children with developmental coordination disorder (DCD) and/or developmental dyslexia (DD), typically-developing children (TD) and healthy adults with a special emphasis on (1) the role of the nature of stimuli and (2) the neuropsychological functions associated to final performance of the sequence. Seventy children and ten adults participated in this study and were separated in five experimental groups: TD, DCD, DD, and DCD + DD children and adults. Procedural learning was assessed with a serial reaction time task (SRTT) that required to tap on a specific key as accurately and quickly as possible when stimuli appeared on the screen. Three types of stimuli were proposed as cues: the classical version of the SRTT with 4 squares aligned horizontally on the screen, giving visuospatial cues (VS cues), and two modified versions, with 4 letters aligned horizontally on the screen (VS + L cues) and letters at the center of the screen (L cues). Reaction times (RT) during the repeated and random blocks allowed assessing three phases of learning: global learning, specific learning and retention of the sequence. Learning was considered as completed when RT evolved significantly in the three phases. Neuropsychological assessment involved, among other functions, memory and attentional functions. Our main result was that learning and retention were not influenced by the available cues in adults whereas learning improved with specific cues in children with or without neurodevelopmental disorders. More precisely, learning was not completed with L cues in children with neurodevelopmental disorders. For children with DD, learning was completed with the VS and VS + L cues whereas for children with DCD (with or without DD), learning was completed with combined VS + L cues. Comorbidity between DD and DCD had no more impact on procedural learning than DCD alone. These results suggest that learning depends on the nature of cues available during practice and that cues allowing learning and retention depend on the type of disorder. Moreover, selective attention was correlated with RT during retention, suggesting that this neuropsychological function is important for procedural learning whatever the available cues.
Collapse
Affiliation(s)
- M. Blais
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alés, Montpellier, France
| | - M. Jucla
- Laboratory of Neuro Psycho Linguistics, University of Toulouse, Toulouse, France
| | - S. Maziero
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
- Laboratory of Neuro Psycho Linguistics, University of Toulouse, Toulouse, France
| | - J. -M. Albaret
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
| | - Y. Chaix
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
- Children’s Hospital, CHU Purpan, Toulouse, France
| | - J. Tallet
- Toulouse NeuroImaging Center, Toulouse University, Inserm, UPS, Toulouse, France
| |
Collapse
|
9
|
Blais M, Jucla M, Maziero S, Albaret JM, Chaix Y, Tallet J. The Differential Effects of Auditory and Visual Stimuli on Learning, Retention and Reactivation of a Perceptual-Motor Temporal Sequence in Children With Developmental Coordination Disorder. Front Hum Neurosci 2021; 15:616795. [PMID: 33867955 PMCID: PMC8044544 DOI: 10.3389/fnhum.2021.616795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/03/2021] [Indexed: 11/13/2022] Open
Abstract
This study investigates the procedural learning, retention, and reactivation of temporal sensorimotor sequences in children with and without developmental coordination disorder (DCD). Twenty typically-developing (TD) children and 12 children with DCD took part in this study. The children were required to tap on a keyboard, synchronizing with auditory or visual stimuli presented as an isochronous temporal sequence, and practice non-isochronous temporal sequences to memorize them. Immediate and delayed retention of the audio-motor and visuo-motor non-isochronous sequences were tested by removing auditory or visual stimuli immediately after practice and after a delay of 2 h. A reactivation test involved reintroducing the auditory and visual stimuli after the delayed recall. Data were computed via circular analyses to obtain asynchrony, the stability of synchronization and errors (i.e., the number of supplementary taps). Firstly, an overall deficit in synchronization with both auditory and visual isochronous stimuli was observed in DCD children compared to TD children. During practice, further improvements (decrease in asynchrony and increase in stability) were found for the audio-motor non-isochronous sequence compared to the visuo-motor non-isochronous sequence in both TD children and children with DCD. However, a drastic increase in errors occurred in children with DCD during immediate retention as soon as the auditory stimuli were removed. Reintroducing auditory stimuli decreased errors in the audio-motor sequence for children with DCD. Such changes were not seen for the visuo-motor non-isochronous sequence, which was equally learned, retained and reactivated in DCD and TD children. All these results suggest that TD children benefit from both auditory and visual stimuli to memorize the sequence, whereas children with DCD seem to present a deficit in integrating an audio-motor sequence in their memory. The immediate effect of reactivation suggests a specific dependency on auditory information in DCD. Contrary to the audio-motor sequence, the visuo-motor sequence was both learned and retained in children with DCD. This suggests that visual stimuli could be the best information for memorizing a temporal sequence in DCD. All these results are discussed in terms of a specific audio-motor coupling deficit in DCD.
Collapse
Affiliation(s)
- Mélody Blais
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
| | - Mélanie Jucla
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Stéphanie Maziero
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Octogone-Lordat, University of Toulouse, Toulouse, France
| | - Jean-Michel Albaret
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Yves Chaix
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
- Hôpital des Enfants, Centre Hospitalier Universitaire de Toulouse, CHU Purpan, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|