1
|
Tsai CN, Tsai CL, Yi JS, Kao HK, Huang Y, Wang CI, Lee YS, Chang KP. Activin A regulates the epidermal growth factor receptor promoter by activating the PI3K/SP1 pathway in oral squamous cell carcinoma cells. Sci Rep 2019; 9:5197. [PMID: 30914776 PMCID: PMC6435638 DOI: 10.1038/s41598-019-41396-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and activin A are both overexpressed in oral cavity squamous cell carcinoma (OSCC). We evaluated their clinical correlation and activin A-mediated EGFR regulation in this study. Overexpression of both transcripts/proteins indicated a poorer prognosis in OSCC patients. Knockdown of endogenous INHBA repressed the expression of EGFR and inhibited activin A-mediated canonical Smads, noncanonical phosphorylation of AKT (ser473) (p-AKT ser473) and SP1. Inhibition of PI3K signaling via its inhibitor attenuated p-AKT ser473 and in turn reduced SP1 and EGFR expression in the presence of recombinant activin A (rActivin A) in OSCC cells, as revealed via a luciferase assay and western blotting. However, canonical Smad signaling repressed the EGFR promoter, as revealed by a luciferase assay. The transcription factor SP1, its coactivator CBP/p300, and Smad proteins were recruited to the EGFR proximal promoter following rActivin A treatment, as revealed by chromatin immunoprecipitation (ChIP). Smad2/3/4 dramatically outcompeted SP1 binding to the EGFR proximal promoter following mithramycin A treatment. Activin A activates the PI3K and Smad pathways to compete for binding to overlapping SP1 consensus sequences on the EGFR proximal promoter. Nevertheless, canonical p-Smad2 was largely repressed in OSCC tumor tissues, suggesting that the activin A-mediated noncanonical pathway is essential for the carcinogenesis of OSCC.
Collapse
Affiliation(s)
- Chi-Neu Tsai
- Graduate Institute of Clinical Medical Sciences, Chang-Gung University, Guishan Dist., Taoyuan City, 33302, Taiwan.,Department of Surgery, Chang-Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan
| | - Chia-Lung Tsai
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan
| | - Jui-Shan Yi
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan.,Molecular Medicine Research Center, Chang Gung University, Guishan Dist., Taoyuan City, 33302, Taiwan
| | - Huang-Kai Kao
- Department of Plastic & Reconstructive Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan
| | - Yenlin Huang
- Department of Pathology, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan
| | - Chun-I Wang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan
| | - Yun-Shien Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan.,Department of Biotechnology, Ming-Chuan University, Guishan Dist., Taoyuan City, 33348, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, Chang Gung Memorial Hospital, Guishan Dist., Taoyuan City, 33305, Taiwan. .,Molecular Medicine Research Center, Chang Gung University, Guishan Dist., Taoyuan City, 33302, Taiwan.
| |
Collapse
|
2
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
3
|
TGF-β Family Signaling in Ductal Differentiation and Branching Morphogenesis. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a031997. [PMID: 28289061 DOI: 10.1101/cshperspect.a031997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Epithelial cells contribute to the development of various vital organs by generating tubular and/or glandular architectures. The fully developed forms of ductal organs depend on processes of branching morphogenesis, whereby frequency, total number, and complexity of the branching tissue define the final architecture in the organ. Some ductal tissues, like the mammary gland during pregnancy and lactation, disintegrate and regenerate through periodic cycles. Differentiation of branched epithelia is driven by antagonistic actions of parallel growth factor systems that mediate epithelial-mesenchymal communication. Transforming growth factor-β (TGF-β) family members and their extracellular antagonists are prominently involved in both normal and disease-associated (e.g., malignant or fibrotic) ductal tissue patterning. Here, we discuss collective knowledge that permeates the roles of TGF-β family members in the control of the ductal tissues in the vertebrate body.
Collapse
|
4
|
Refaat B, El-Shemi AG, Mohamed AM, Kensara OA, Ahmad J, Idris S. Activins and their related proteins in colon carcinogenesis: insights from early and advanced azoxymethane rat models of colon cancer. BMC Cancer 2016; 16:879. [PMID: 27835986 PMCID: PMC5106801 DOI: 10.1186/s12885-016-2914-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/27/2016] [Indexed: 02/07/2023] Open
Abstract
Background Activin-A may exert pro- or anti-tumorigenic activities depending on cellular context. However, little is known about its role, or the other mature activin proteins, in colorectal carcinoma (CRC). This study measured the expression of activin βA- & βB-subunits, activin type IIA & IIB receptors, smads 2/3/4/6/7 and follistatin in CRC induced by azoxymethane (AOM) in rats. The results were compared with controls and disseminated according to the characteristics of histopathological lesions. Methods Eighty male Wistar rats were allocated into 20 controls and the remaining were equally divided between short ‘S-AOM’ (15 weeks) and long ‘L-AOM’ (35 weeks) groups following injecting AOM for 2 weeks. Subsequent to gross and histopathological examinations and digital image analysis, the expression of all molecules was measured by immunohistochemistry and quantitative RT-PCR. Activin-A, activin-B, activin-AB and follistatin were measured by ELISA in serum and colon tissue homogenates. Results Colonic pre-neoplastic and cancerous lesions were identified in both AOM groups and their numbers and sizes were significantly (P < 0.05) greater in the L-AOM group. All the molecules were expressed in normal colonic epithelial cells. There was a significantly (P < 0.05) greater expression of βA-subunit, IIB receptor and follistatin in both pre-neoplastic and cancerous tissues. Oppositely, a significant (P < 0.05) decrease in the remaining molecules was detected in both AOM groups. Metastatic lesions were only observed within the L-AOM group and were associated with the most significant alterations of all molecules. Significantly higher concentrations of activin-A and follistatin and lower activin-AB were also detected in both groups of AOM. Tissue and serum concentrations of activin-A and follistatin correlated positively, while tissue activin-AB inversely, and significantly with the numbers and sizes of colonic lesions. Conclusions Normal rat colon epithelial cells are capable of synthesising, controlling as well as responding to activins in a paracrine/autocrine manner. Colonic activin systems are pathologically altered during tumorigenesis and appear to be time and lesion-dependent. Activins could also be potential sensitive markers and/or molecular targets for the diagnosis and/or treatment of CRC. Further studies are required to illustrate the clinical value of activins and their related proteins in colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2914-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bassem Refaat
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia.
| | - Adel Galal El-Shemi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia.,Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Amr Mohamed Mohamed
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia.,Clinical Laboratory Diagnosis, Department of Animal Medicine, Faculty of Veterinary Medicine, Assiut University, 71526, Assiut, Egypt
| | - Osama Adnan Kensara
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| | - Jawwad Ahmad
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| | - Shakir Idris
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Al-Abdeyah, PO Box 7607, Makkah, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Kim MN, Kim YI, Cho C, Mayo KE, Cho BN. Change in the Gastro-Intestinal Tract by Overexpressed Activin Beta A. Mol Cells 2015; 38:1079-85. [PMID: 26608361 PMCID: PMC4696999 DOI: 10.14348/molcells.2015.0189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/08/2015] [Accepted: 09/24/2015] [Indexed: 11/27/2022] Open
Abstract
Originally, activins were identified as stimulators of FSH release in reproduction. Other activities, including secondary axis formation in development, have since been revealed. Here, we investigated the influence of activin βA on the body, including the gastro-intestinal (GI) tract. Initially, the activin βA protein was detected in the serum proportional to the amount of pCMV-rAct plasmid injected. The induced level of activin βA in muscle was higher in female than male mice. Subsequent results revealed that stomach and intestine were severely damaged in pCMV-rAct-injected mice. At the cellular level, loss of parietal cells was observed, resulting in increased pH within the stomach. This phenomenon was more severe in male than female mice. Consistent with damage of the stomach and intestine, activin βA often led to necrosis in the tip of the tail or foot, and loss of body weight was observed in pCMV-rAct-injected male but not female mice. Finally, in pCMV-rAct-injected mice, circulating activin βA led to death at supraphysiological doses, and this was dependent on the strain of mice used. Taken together, these results indicate that activin βA has an important role outside of reproduction and development, specifically in digestion. These data also indicate that activin βA must be controlled within a narrow range because of latent lethal activity. In addition, our approach can be used effectively for functional analysis of secreted proteins.
Collapse
Affiliation(s)
- Mi-Nyeu Kim
- Department of Life Science, The Catholic University of Korea, Bucheon 14662,
Korea
| | - Young Il Kim
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 130-872,
Korea
| | - Chunghee Cho
- School of Life Science, Kwangju Institute of Science and Technology (K-JIST), Gwangju 500-712,
Korea
| | - Kelly E. Mayo
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208,
USA
| | - Byung-Nam Cho
- Department of Life Science, The Catholic University of Korea, Bucheon 14662,
Korea
| |
Collapse
|
6
|
Katano T, Ootani A, Mizoshita T, Tanida S, Tsukamoto H, Ozeki K, Kataoka H, Joh T. Gastric Mesenchymal Myofibroblasts Maintain Stem Cell Activity and Proliferation of Murine Gastric Epithelium in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:798-807. [DOI: 10.1016/j.ajpath.2014.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/17/2014] [Accepted: 11/07/2014] [Indexed: 01/09/2023]
|